Synthesis and Antimicrobial Activity of Schiff’s and N-Mannich Bases of Indoline 2, 3-Dione and Its Derivatives with N-(4-(4-Aminophenylsulphonyl) Phenyl) Acetamide

Udit N. Soni a* and Anoop Singh a

a Faculty of Pharmacy, Bhagwant University, Ajmer, Rajasthan, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i64B36014

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/84914

Received 21 October 2021
Accepted 28 December 2021
Published 30 December 2021

ABSTRACT

Indoline 2, 3-dione and substituted Indoline 2, 3-dione derivatives were reacted with N-(4-(4-aminophenylsulphonyl) phenyl) acetamide to generate a variety of Schiff’s bases. Using these compounds’ Mannich bases were created by reacting them with formaldehyde and secondary amine (piperidine). The compounds were all described using IR, 1H NMR spectroscopic data and elemental analysis. The antibacterial activity of the produced compounds was determined using the tube dilution and Well plate methods. When compound UNS-2 was incubated at concentrations of 100, 50, and 25mg/ml, it showed the greatest Zone of Inhibition against Enterococcus faecalis. When compared to the reference medication, all of the synthesised compounds demonstrated superior antimicrobial efficacy.

Keywords: Indoline 2,3-dione; Schiff’s bases; Mannich bases; antimicrobial activity.

1. INTRODUCTION

Indoline 2, 3-dione has been reported to have extremely high activity in animals. [1] most recently Antifungal [2-15], antibacterial [2-15], anti-HIV[6-10,16-17], anti-viral [18-19], anti-convulsant [20-23], antitubercular [24-26], and anticancer activities[27-29] have been described

*Corresponding author: E-mail:uditsoni05@gmail.com;
for Schiff’s and Mannich bases of Indoline 2, 3-
dione. We have synthesised novel Schiff’s bases of
Indoline 2, 3-dione using N-(4-(4-
aminophenylsulphonyl)phenyl) acetamide as part of
our ongoing study on Indoline 2, 3-dione. The
imino group of Indoline 2, 3-dione was reacted with
formaldehyde and N-ethyl-N-
methylethanamine & perhydoro azine to produce
the N-Mannich bases of above Schiff’s bases.

2. MATERIALS AND METHODS

The melting points were calculated using a
capillary melting point instrument and are
uncorrected. 1H NMR data was collected on a
300 MHz Brucker DRX-300 using DMSO as an
internal standard and TMS as an external
standard. The FTIR8400S Shimadzu IR
Spectrophotometer was used to capture the IR
spectra. The elemental analysis was done on
Carlo Erba 1108, and the results were within 4%
of the theoretical values. The turbidity was
visually compared, and the zone of inhibition was
quantified. The homogeneity of the compounds
was determined using Silica-G coated TLC plates (Merck) and iodine vapour [30].

2.1 Synthesis of Schiff’s Base (General
Method)

Equimolar quantities of 0.01 mol of Indoline 2, 3-
dione/substituted Indoline 2, 3-dione and N-(4-(4-
aminophenylsulphonyl)phenyl) acetamide were
dissolved in 40 mL of ethanol. (2 ml) Glacial
acetic acid was added and the reaction mixture
was refluxed for about 8-10 hours. The reaction
mixture was poured on to crushed ice. The
crystalline product was collected by filtration/
vacuum filtration, dried and recrystallised.

• (Z)-N-(4-(4-[(2-oxoindolin-3-
ylideneamino)phenyl Sulfonyl])
phenyl) acetamide (UNS-1)

IR (KBr) 3468 (NH str), 1733 (C=O str),
1640 (C=N str),1330 anti, 1127 Syn
(O=S=O str)cm\(^{-1}\),\(^1\)H NMR
(DMSO)ppm. 7.03-7.9 (12H, m, Ar-H),8.0
(1H, s, -NH-CO-), 2.02 (3H, s, CH\(_3\)).

• (Z)-N-(4-(4-(1-acetyl-5-bromo-2-
oxoindolin-3-
ylideneamino)phenylSulfonyl)phenyl)
acetamide (UNS-3)

IR (KBr) 3408 (NH str), 1733 (C=O str),
1640 (C=N str),1330 anti, 1127 Syn
(O=S=O str), 620 (C-Br)cm\(^{-1}\),\(^1\)H NMR
(DMSO)ppm. 7.4-7.9 (11H, m, Ar-H), 8.0
(1H, s, -NH-CO-), 2.02-2.40 (6H, m,
CH\(_3\)).

• (Z)-N-(4-(4-(1-methyl-5-nitro-2-
oxoindolin-3-
ylideneamino)phenylSulfonyl)phenyl)
acetamide (UNS-4)

IR (KBr) 3460 (NH str), 1730 (C=O str),
1640 (C=N str),1330 anti, 1127 Syn
(O=S=O str), 1519 (N-O str)cm\(^{-1}\),\(^1\)H NMR
(DMSO)ppm. 7.4-8.53 (11H, m, Ar-H),
8.0 (1H, s, -NH-CO-), 2.02-2.78 (6H, m,
CH\(_3\)).

2.2 Synthesis of N-Mannich Bases
(General Method)

A slurry was prepared using 0.005 mol of Schiff’s base
containing the imino group of Indoline 2, 3-
dione, 5 ml of THF, and 2 ml of 37 percent HCl.
With cooling and shaking, N-ethyl-N-
methylethanamine / perhydoro azine (0.005mol)
was added dropwise. The reaction mixture was
allowed to remain at room temperature for 1 hour
with intermittent shaking before being heated for
15 minutes in a boiling water bath. Finally, the
reaction mixture was cooled, and the resulting
product was recrystallised from petroleum ether.

• (Z)-N-(4-(4-(5-chloro-1-
(diethylamino)methyl)-2-oxoindolin-
3ylideneamino)phenylSulfonyl)phenyl)
acetamide (UNS-5)

IR (KBr) 3440 (NH str), 1740 (C=O str),
1640 (C=N str),1330 anti, 1127 Syn
(O=S=O str), 2935 (C-H str) 720 (C-Cl
str)cm\(^{-1}\),\(^1\)H NMR (DMSO)ppm. 7.4-7.9
(11H, m, Ar-H), 8.0 (1H, s, -NH-CO-),
2.02 (3H, s, CH\(_3\)), 1.0-4.03 (12H, m, -
CH\(_2\)-N(O\(_2\)H\(_3\)).)
- (Z)-N-(4-(4-(5-bromo-1-((diethylamino)methyl)-2-oxoindolin-3-ylideneamino)phenyl sulfonyl)phenyl)acetamide (UNS-6)

IR (KBr) 3436 (NH str), 1733 (C=O str), 1630 (C=N str), 1330 anti, 1127 Syn (O=S=O str), 2932 (C-H str), 620 (C-Br str) cm\(^{-1}\).\(^1\)H NMR (DMSO) ppm. 7.4-7.9 (11H, m, Ar-H), 8.0 (1H, s, -NH-CO-), 2.02 (3H, s, CH\(_3\)), 1.0-4.03 (12H, m, -CH\(_2\)-N(C\(_2\)H\(_5\))\(_2\)).

- (Z)-N-(4-(4-(5-nitro-2-oxo-1-(piperidin-1ylmethyl)indolin-3-ylideneamino)phenyl sulfonyl)phenyl) acetamide (UNS-8)

IR (KBr) 3439 (NH str), 1738 (C=O str), 1630 (C=N str), 1330 anti, 1127 Syn (O=S=O str), 2910 (C-H str), 1530 (N-O str) cm\(^{-1}\).\(^1\)H NMR (DMSO) ppm. 7.4-8.53 (11H, m, Ar-H), 8.0 (1H, s, -NH-CO-), 2.02 (3H, m, CH\(_3\)), 4.03 (2H, s, -CH\(_2\)-), 1.5-2.24 (10H, s, piperidine).

- (Z)-N-(4-(4-(5-chloro-2-oxo-1-(piperidin-1ylmethyl)indolin-3-ylideneamino)phenyl sulfonyl)phenyl) acetamide (UNS-7)

IR (KBr) 3439 (NH str), 1742 (C=O str), 1638 (C=N str), 1330 anti, 1127 Syn (O=S=O str), 2935 (C-H str), 720 (C-Cl str) cm\(^{-1}\).\(^1\)H NMR (DMSO) ppm. 7.4-7.9 (11H, m, Ar-H), 8.0 (1H, s, -NH-CO-), 2.02 (3H, m, CH\(_3\)), 4.03 (2H, s, -CH\(_2\)-), 1.5-2.24 (10H, s, piperidine).

- (Z)-N-(4-(4-(5-bromo-2-oxo-1-(piperidin-1ylmethyl)indolin-3-ylideneamino)phenyl sulfonyl)phenyl) acetamide (UNS-9)

IR (KBr) 3434 (NH str), 1730 (C=O str), 1630 (C=N str), 1330 anti, 1127 Syn (O=S=O str), 2930 (C-H str), 620 (C-Br str) cm\(^{-1}\).\(^1\)H NMR (DMSO) ppm. 7.4-7.9 (11H, m, Ar-H), 8.0 (1H, s, -NH-CO-), 2.02 (3H, s, CH\(_3\)), 4.03 (2H, s, -CH\(_2\)-), 1.5-2.24 (10H, s, piperidine).

Scheme 1. Synthesis of Schiff's bases

R = H, Cl, Br, NO\(_2\)
R' = H, CH\(_3\), COCH\(_3\)

Scheme 2. Synthesis of N-Mannich bases

R = H, Cl, Br, NO\(_2\)
R' = \[\text{N(C}_2\text{H}_5\text{)}_2\]
2.2 Antimicrobial Screening Antimicrobial Activity of Compound

2.2.1 Microbes used

The reference microbial species; Microbial Type Culture Collection (MTCC) of *Klebsiella pneumonia* (MTCC- 432), *Staphylococcus aureus* (MTCC- 3160), *Enterococcus faecalis* (MTCC-439), *Candida albicans* (MTCC-183), *Aspergillus flavus* (MTCC-277) were collected from bacteriology unit of the microbiology laboratory.

2.2.2 Media preparation

To begin, all laboratory instruments were sterilized. All glassware used in the assay, such as Erlenmeyer flasks, graduated cylinders, stirring rods, beakers, test tubes, petri dishes, and inoculating loops, were placed in an autoclave at 121°C under 15 psi pressure for 25 minutes using an autoclave and following aseptic technique method.

Inside the laboratory, nutrient agar medium (NAM) was created for bacterial growth and potato dextrose agar (PDA) for fungal growth. Petri dishes of standard size are required for the entire experiment. 13g of powder for NAM and 24g powder for PDA were combined with 1000 ml of distilled water and agitated to achieve a homogenised slurry. Following that, the NAM and PDA combination was sterilised in an autoclave at 121°C for 25 minutes at 15 psi pressure. The culture medium was then placed into petri dishes at a ratio of 20 ml/dish and left partially covered on the table to cool and harden at room temperature.

The pure isolates culture broth cultures, were created by putting a loop of culture into sterile nutrient and potato dextrose broth and incubating it at 37°C for 24 hours. To generate diffused heavy lawn culture, a loop full of these broths was obtained and seeded onto sterile nutrient and potato dextrose agar plates using a sterile cotton swab. The antibacterial activity of was determined using the well diffusion technique.

3. RESULTS AND DISCUSSION

Indoline 2, 3-dione and substituted Indoline 2, 3-dione derivatives were reacted with N-(4-(4-aminophenylsulphonyl) phenyl) acetamide to generate a variety of Schiff's bases. Mannich bases were created by reacting them with formaldehyde and secondary amine (piperidine). The compounds were all described using IR, 1H NMR spectroscopic data, and elemental analysis. For antimicrobial experiments, different concentrations of 3.12, 6.25, 12.5, 25, 50, and 100 mg/ml were utilised based on the MIC chosen for each microorganism. Its key characteristic is the quick placement of wells containing antibiotics on the surfaces of agar following inoculation with the organism being investigated. Overnight broth cultures that have not been diluted never be utilised as inoculums. After 24 hours of incubation at 37°C, the plates were inspected for obvious zones of inhibition (mm) surrounding the wells impregnated with a specific dose of medication. When compound UNS-2 was incubated at concentrations of 100, 50, and 25mg/ml, it showed the greatest Zone of Inhibition against *Enterococcus faecalis*. When compared to the reference medication, all of the synthesised compounds demonstrated superior antimicrobial efficacy.

<table>
<thead>
<tr>
<th>Compound Code</th>
<th>R</th>
<th>R</th>
<th>M.P. (°C)</th>
<th>Molecular Formula</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNS-01</td>
<td>H</td>
<td>H</td>
<td>102</td>
<td>C_{22}H_{17}N_{3}O_{5}S</td>
<td>76</td>
</tr>
<tr>
<td>UNS-02</td>
<td>Cl</td>
<td>-CH_{3}</td>
<td>118</td>
<td>C_{23}H_{18}ClN_{3}O_{5}S</td>
<td>78</td>
</tr>
<tr>
<td>UNS-03</td>
<td>Br</td>
<td>-COCH_{3}</td>
<td>198</td>
<td>C_{24}H_{18}BrN_{3}O_{5}S</td>
<td>68</td>
</tr>
<tr>
<td>UNS-04</td>
<td>NO_{2}</td>
<td>-CH_{3}</td>
<td>146</td>
<td>C_{23}H_{18}N_{3}O_{6}</td>
<td>60</td>
</tr>
<tr>
<td>UNS-05</td>
<td>Cl</td>
<td>-CH_{2}-N(C_{4}H_{9})_{2}</td>
<td>136</td>
<td>C_{27}H_{27}ClN_{3}O_{6}S</td>
<td>82</td>
</tr>
<tr>
<td>UNS-06</td>
<td>Br</td>
<td>-CH_{2}-N(C_{4}H_{9})_{2}</td>
<td>150</td>
<td>C_{27}H_{27}BrN_{3}O_{6}S</td>
<td>72</td>
</tr>
<tr>
<td>UNS-07</td>
<td>Cl</td>
<td></td>
<td>142</td>
<td>C_{28}H_{27}ClN_{3}O_{6}S</td>
<td>89</td>
</tr>
<tr>
<td>UNS-08</td>
<td>NO_{2}</td>
<td></td>
<td>130</td>
<td>C_{28}H_{27}N_{3}O_{6}S</td>
<td>88</td>
</tr>
<tr>
<td>UNS-09</td>
<td>Br</td>
<td></td>
<td>100</td>
<td>C_{28}H_{27}BrN_{3}O_{6}S</td>
<td>78</td>
</tr>
</tbody>
</table>
Table 2. Antimicrobial activity of UNS-1 to UNS-9 against *Klebsiella pneumonia*

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>UNS-1</th>
<th>UNS-2</th>
<th>UNS-3</th>
<th>UNS-4</th>
<th>UNS-5</th>
<th>UNS-6</th>
<th>UNS-7</th>
<th>UNS-8</th>
<th>UNS-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>13±0.47</td>
<td>9±0.47</td>
<td>8±0.47</td>
<td>14±0.47</td>
<td>11±0.47</td>
<td>16±0.47</td>
<td>13±0.47</td>
<td>11±0.47</td>
<td>10±0.47</td>
</tr>
<tr>
<td>50</td>
<td>10±0.47</td>
<td>8±0.47</td>
<td>7±0.47</td>
<td>12±0.47</td>
<td>10±0.47</td>
<td>11±0.47</td>
<td>11±0.47</td>
<td>10±0.47</td>
<td>8±0.47</td>
</tr>
<tr>
<td>25</td>
<td>6±0</td>
<td>6±0</td>
<td>6±0</td>
<td>6±0</td>
<td>6±0</td>
<td>6±0</td>
<td>6±0</td>
<td>6±0</td>
<td>6±0</td>
</tr>
</tbody>
</table>

Table 3. Antimicrobial activity of UNS-1 to UNS-9 against *Enterococcus faecalis*

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>UNS-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>34±0.47</td>
</tr>
<tr>
<td>25</td>
<td>33±0.47</td>
</tr>
<tr>
<td>12.5</td>
<td>6±0</td>
</tr>
<tr>
<td>12.5</td>
<td>34±0.47</td>
</tr>
<tr>
<td>6.25</td>
<td>25±0.94</td>
</tr>
<tr>
<td>3.12</td>
<td>6±0</td>
</tr>
<tr>
<td>100</td>
<td>35±0.47</td>
</tr>
<tr>
<td>50</td>
<td>34±0.47</td>
</tr>
<tr>
<td>25</td>
<td>23±0.47</td>
</tr>
<tr>
<td>Concentration (µg/ml)</td>
<td>UNS-1</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>25</td>
<td>13±0.47</td>
</tr>
<tr>
<td>12.5</td>
<td>12±0.47</td>
</tr>
<tr>
<td>6.25</td>
<td>10±0.47</td>
</tr>
<tr>
<td>3.12</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Antimicrobial activity of UNS-1 to UNS-9 against *Staphylococcus aureus*
Table 5. Antimicrobial activity of UNS-1 to UNS-9 against *Candida albicans*

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>UNS-1</th>
<th>UNS-2</th>
<th>UNS-3</th>
<th>UNS-4</th>
<th>UNS-5</th>
<th>UNS-6</th>
<th>UNS-7</th>
<th>UNS-8</th>
<th>UNS-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15±1.24</td>
<td>14±0.81</td>
<td>15±0.47</td>
<td>16±0.47</td>
<td>9±0.47</td>
<td>13±0.94</td>
<td>14±0.47</td>
<td>17±0.47</td>
<td>14±0.47</td>
</tr>
<tr>
<td>50</td>
<td>13±0.47</td>
<td>11±0.47</td>
<td>12±0.47</td>
<td>14±0.47</td>
<td>8±0.47</td>
<td>11±0.47</td>
<td>12±0.47</td>
<td>14±0.47</td>
<td>12±0.47</td>
</tr>
<tr>
<td>25</td>
<td>7±0.47</td>
<td>7±0.47</td>
<td>7±0.47</td>
<td>9±0.47</td>
<td>6±0.47</td>
<td>6±0.47</td>
<td>7±0.47</td>
<td>9±0.47</td>
<td>6±0.47</td>
</tr>
<tr>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Antimicrobial activity of UNS-1 to UNS-9 against *Aspergillus flavus*

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>UNS-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>9±0.47</td>
</tr>
<tr>
<td>50</td>
<td>8±0.47</td>
</tr>
<tr>
<td>25</td>
<td>6±0.47</td>
</tr>
</tbody>
</table>
4. CONCLUSION

The synthesis and antibacterial activity of Schiff's and N-Mannich bases of Indoline 2, 3-dione and its derivatives with N-(4-(4-aminophenylsulphonyl) phenyl) acetamide are being investigated in this study. All of the substances tested positive for antibacterial activity against Klebsiella pneumonia, Enterococcus faecalis, Staphylococcus aureus, Candida albicans, and Aspergillus flavus. When compound UNS-2 was incubated at concentrations of 100, 50, and 25mg/ml, it showed the greatest Zone of Inhibition against Enterococcus faecalis. The study revealed that the produced chemical demonstrated significant antibacterial efficiency and may be commercially manufactured and tested for additional pharmacological properties.

DISCLAIMER

There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Somogyi L. Transformation of is a tin 3-acylhydrazones under acetylation

