The Significance of *Nigella sativa* on Histomorphological Variations of Seminiferous Tubules in Doxorubicin Treated Albino Rats

Ashok Kumar a≡, Anjum Rehman bο, Sadia Sundus cφ*, Saher Fatima b†, Zeeshan Ahmed dτ and Asma Aijaz e≡

a Department of Anatomy, SMBBMC, Pakistan.
b Department of Gynaec & Obs, SMBBMC, Pakistan.
c Department of Anatomy, Iqra Medical & Dental, Karachi, Pakistan.
d Department of Surgery, SMBBMC, Pakistan.
e Department of Anatomy, Karachi Medical & Dental College, Pakistan.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i12A35548

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/82858

Received 07 December 2021
Accepted 14 February 2022
Published 17 February 2022

ABSTRACT

Objective: To analyze the impact of *nigella sativa* on Histomorphological changes in doxorubicin treated albino rats.

Research Design: Experimental research.

Abode of Study: Anatomy Department, BMSI, Karachi, Pakistan.

Materials and Methods: Piloted on 40 albino rats for 35 days in the Anatomy Department of BMSI. They were 3-4 months old and about 221 to 238 gm in weight. Rats were separated into 4 groups, Ao, Bo, Co & Do. Ao represented as control, Bo received Doxorubicin (DOX) 0.003g/1000g/ at 7TH day intraperitonealy, Co recieved *Nigella sativa* 1000mg/1000g everyday oral along with Doxorubicin 0.003g/1000g/ at 7TH day intraperitonealy and Do recieved *Nigella sativa* 1000mg/kg

≡Assistant Professor;
οProfessor & Principal;
φAssociate Professor (MBBS, Mphil);
τAssociate Professor;
‡Medical officer;
*Corresponding author: E-mail: usadsun_dr@yahoo.com;
Keywords: NG (Nigella sativa); malondialdehyde (MDA); histomorphological; ROS (reactive oxygen species); plasmalemma.

1. INTRODUCTION

Inspite of injurious effects of doxorubicin on somatic and gonadal cells, it is commonly used as an anticancer drug in previous years [1]. It decreases testicular size, sperm count & raise the luminal diameter of seminiferous tubules by reducing spermatogonia, spermatocytes and Sertoli cell count due to oxidative stress activity [2]. This shows that it causes male infertility but improves the lifespan of young cancer patients [3].

Doxorubicin is an antimicrobial drug which belongs to anthracycline group and found in fungus Streptomyces peucetius and act as a chemotherapeutic agent against numerous malignant tumors. It speed up cell cycles in bone marrow, gonads and lymphoid tissues by oxidative stress causing production of ROS, lipid peroxidation and cell death [4]. Testis is commonly impaired due to its proliferative ability, thus causing oligozoospermia, azoospermia and permanent infertility in patients of prepubertal age [5]. It inhibits DNA replication by inhibition of topoisomerase II enzyme and by separating histones from chromatin network [6,7]. Topoisomerase II alters the stereochemical organization of the DNA helix by negative supercoiling of DNA. It is cardiotoxic, hepatotoxic, nephrotoxic as well as it causes testicular toxicity due to raised proinflammatory cytokines levels, oxidative stress causing protein oxidation & lipid peroxidation in plasmalemma. Although reactive oxygen species (ROS) are necessary for sperm maturation & capacitation, fertilization but raised levels of ROS reduces sperm motility and sperm apoptosis [8,9]. It causes genotoxicity by cellular apoptosis and DNA fragmentation due to its high affinity towards chromosomal DNA [10]. It causes Interruption in spermatogenesis, decreases testosterone level as well as interrupt the antioxidant activity [11].

Nigella sativa also known as Shounez in Iran is associated with Ranunculaceae group cultivated in South of Mediterranean, Eastern Europe, Western Asia and Middle East, having antioxidant, diuretic, antipyretic, antimicrobial, anti diabetic & digestive properties. It also improves sperm count in cauda epididymis and testicular ducts, viability and motility [12]. Spermatogenesis increases at the primary and secondary spermatocyte and decreases abnormalities of sperm whereas reduces the serum level of MDA and raises glutathione and catalase actions [13]. It is used to treat numerous health problems because it contains thymoquinone, flavonoids, anthocyanins, alkaloids, and essential fatty acid thus it helps in wound healing [14]. It is potent against malignancy, immunological ailments, inflammation and osteoporosis and act as antimicrobial, anti-schistosomiasis, spasmylocytic, immunomodulatory and bronchodilator and antiallergic agent. It increases the spermatogenesis activity both morphologically and functionally. Thymoquinone, present in Nigella Sativa improves male fertility through its antioxidant defense mechanism [15]. It is present in Tibb-e- Nabvi, Unani Tibb, and Indian traditional medicine and used as an antihypertensive, liver tonic, spice and carminative [16]. It can augment the spermatozoal development, improve the testicular diameter as well as enhanced semen physical features and reduced the free radicals in seminal plasma [17]. Nigella sativa protects testis against oxidative stress due to Thymoquinone and tocopherols present in it which inhibits lipid peroxidation and improves spermatogenesis at primary and secondary spermatocyte level [18]. It also raise the serum testosterone level, seminal quality, sperm count, percentage fertility, decreased sperm abnormalities and improve accessory sexual glands activity through its antioxidative properties [19,20]. It promotes the human wellbeing beside common ailments like hyperglycemia and hypercholesterolemia and interrupts the oxidative process of lipids [21]. Nigella sativa acts as gastroprotective, nephroprotective, &

Results: Bo showed loss of normal architecture of seminiferous tubules and diverse level of atrophy while condition was improved in Co which were given Doxorubicin with extract of Nigella sativa.

Conclusion: Our result tells us that Nigella sativa amended the histomorphological changes.

everyday oral. At the end of experiment, rats were dissected and conserved slides for staining.
genoprotective due to Thymoquinone and tocopherols constituent present in it [22].

The research was therefore piloted to estimate the positive effects of *Nigella sativa* on histomorphometric changes of doxorubicin induced testes with emphasis on sperm production index and compare the outcomes with previous researches.

2. MATERIALS AND METHODS

This experiment was conducted on forty young adult albino rats, 3-4 months old & 221-238gm weight, in department of Anatomy, in BMSI, Karachi for 35 days. 7 days prior to study rats were kept underneath observation to assess their well-being and kept on standard laboratory diet.

Rats were divided into four groups, comprises of ten animals per group.

Ao = Control.
Bo= Doxorubicin (DOX) 0.003g/1000g/at 7TH day intraperitonealy [23].
Co= *Nigella sativa* 1000mg/kg everyday oral along with Doxorubicin 0.003g/1000g/at 7TH day intraperitonealy [24].
Do= *Nigella sativa* 1000mg/kg everyday oral. (purchased from bazaar of Karachi and re-identified from Karachi university).

Nigella Sativa seeds cleaned, crushed and powder stored in cool place. Injection Doxorubicin (Pfizer Pak) 50mg/25ml was used.

Rats were daily observed for their wellbeing. After completion of research rats were dissected by midline incision. Boin’s fluid used as fixative for testis & fixation done for 24 hours, then sliced vertically into two equal halves on next day. For dehydration done through alcohol (70 to 100 %) and cleared by xylene. Infiltration and embedding done in Paraffin wax & sections were obtained by rotatory microtome and mounted on glass slides. Sections were stained by periodic Acid Schiff & H&E stain to see morphological and micrometric changes.

2.1 Group Ao

2.1.1 Morphological observations

Rats were in good physical condition & spontaneously react to external stimuli. Both testes were oval in shape, pink colored and soft in consistency.

2.1.2 Microscopic observations

4um thick testicular sections of left testis stained with H&E revealed that testicular parenchyma was composed of circular or oval seminiferous tubules. (Fig. 1a)PAS stain revealed that every seminiferous tubules was lined by stratified columnar epithelium having spermatogenic and sertoli cells. (Fig. 1b) (Fig. 5) Spermatogonia were resting on basement membrane and primary spermatocytes were located in between spermatogonia. Then secondary spermatocytes were located and superior to them spermatids were present. Vacuolization and detached basement membrane were absent. (Fig. 5) Between tubules interstitial spaces were present containing leydig cells & blood vessels. Leydig cells are polygonal cells having spherical nucleus. (Fig. 1c)

2.2 Group Bo

2.2.1 Morphological observations

Rats of this group develops alopecia & looked lethargic & testis became reddish in color.

2.2.2 Microscopic observations

H&E stained tissues showed loss of architecture of seminiferous tubules and diverse level of atrophy seen. Some of them were irregularly arranged and some were distorted in shape. PAS stained slides shows basement membrane was detached in many parts of various seminiferous tubules and became thin in various sections. (Figs. 6a&b) Lumen of seminiferous tubules was full of slough and cellular debris whereas no visible spermatozoa seen. (Fig. 2a) Germinal epithelium was destroyed. There was depletion of germ cell and sertoli cell in various tubules and in many seminiferous tubules there were loss of germ cell line, marked vacuolization seen in many parts of this epithelium. Multinucleated formation of round spermatids was seen in many places. Sertoli cell was not visible clearly in some places multinucleated formation and pyknotic nucleus in place of sertoli cell. (Fig. 2b) Marked vacuolization & wide interstitial spaces observed (Fig. 2c)

2.3 Group Co

2.3.1 Morphological observations

Rats were fit, active and spontaneously responding to stimuli. Testicular tissue remain pink in color with blood vessels on surface.
2.3.2 Microscopic observations

H&E stained tissues showed most of seminiferous tubules were round & regularly arranged with their normal architecture some vacuoles present in few tubules. PAS stain revealed intact basement membrane in almost every tubule. (Fig. 7) Lumen of seminiferous tubules showed spermatozoa without slough and cellular debris. (Figs. 3a&b)

2.4 Group Do

2.4.1 Morphological observations

Rats were fit and in best of their health. Testicular tissue were soft & pink in color with blood vessels on surface.

2.4.2 Microscopic observations

H&E stained sections revealed that each seminiferous tubules was bounded by basal lamina lined by stratified germinal epithelium. Sertoli cells interposed between spermatogenic cell layers were long, extending from basal membrane to the lumen of seminiferous tubules with triangular or ovoid nucleus. (Fig. 4) spermatogenic cells present in the sections of this group showed energetic germ cell with enhanced mitotic activity than control. Interstitial spaces were composed of polygonal Leydig cells with spherical nucleus. Marked recovery in germ cell lining of seminiferous tubules sertoli cell Interposed between developing spermatogonia cell with triangular or ovoid nucleus, no pyknotic nuclei and no any multinucleated formation but here also some vacuolization observed. (Fig.4).

2.5 Period of research work

The duration of research was one month and 7 days.

3. DISCUSSION

In spite of injurious influence of doxorubicin on normal body tissues and gonads, it is one of the commonest medications used for the treatment of various type of malignances [1]. It reduces the spermatogonia, spermatocytes & sertoli cell count, thus enlarged the luminal diameter of seminiferous tubules [2]. Doxorubicin mutilate DNA of malignant cell as well as normal healthy cells and causes oxidative stress and cellular apoptosis [11]. *Nigella sativa* is a Ranunculaceae group member, cultivated in South of Mediterranean sea and have antioxidant, diuretic, analgesic, antipyretic, antimicrobial, antidiabetic & digestive properties. It mends sperm viability, motility & contour of testis [12,13].

![Fig. 1a. Photomicrograph of an adult rat testis of control group showing seminiferous tubules (S), germinal epithelium(GE)basement membrane (BM)cut in various planes of section completely bound by basal membrane and lined by germinal epithelium (H&E 10x)](image)
Fig. 1b. Photomicrograph control group showing seminiferous tubules (S) with intact basement membrane and lined by epithelium containing leydig cell (L.C) in interstitial spaces (IS) H&E 40x)

Fig. 1c. Photomicrograph of control group showing somniferous tubules (S), showing spermatogonia (S.G) primary spermatocytes (P.S) secondary spermatocytes (S.S) and spermatids (S.T) H&E 100x)

Fig. 2a. Photomicrograph of an adult rat testis, treated with Doxorubicin showing seminiferous tubules (S), cut in various planes of section nearly devoid of Germinal Epithelium (GE) with vacuolation (V) and ruptured blood vessels (BV) in the interstitial spaces (IS) (H&E 4x)
Fig. 2b. Photomicrograph of an adult rat testis, treated with Doxorubicin showing seminiferous tubules nearly devoid of Germinal Epithelium (GE), wide interstitial spaces (IS), with scanty leydig cell, ruptured blood vessel (b.v) and vacuolation in GE and IS (H&E 10x)

Fig. 2c. Photomicrograph of an adult rat testis, treated with Doxorubicin showing many multinucleate giant cell in one seminiferous tubules 17105132-H&E 100x

Fig. 3a. Photomicrograph of an adult rat testis, treated with Doxorubicin and Nigella sativa showing seminiferous tubules (S), cut in various planes of section showing nearly normal cytoarchitecture of seminiferous tubules (S) and blood vessels in interstitial spaces (IS) H&E 4x
Fig. 3b. Photomicrograph of an adult rat testis, treated with Doxorubicin and Nigella sativa showing marked recovery of germinal epithelium (G.E) in parts of four seminiferous tubules (S), with Leydig cell (L.C) in contacted triangular interstitial spaces (IS) H&E 40x)

Fig. 4. Photomicrograph of an adult rat testis, treated with Nigella sativa, showing seminiferous tubules (S) with enhanced mitotic activity in germinal epithelium (GE) than control (H&E 40x)

Fig. 5. Photomicrograph (control group) showing seminiferous tubules (S) with intact basement membrane (BM) & stratified columnar epithelium (GE) are in layers (LC) and in triangular contacted interstitial spaced (IS) (PAS 40x)
Fig. 6a. Photomicrograph of an adult rat testis, treated with Doxorubicin showing seminiferous tubules (S), with detached basement membrane (DBM), wide interstitial space (IS) marked vacuolation (V) of germ and sertoli cell blood vessels (BV) in interstitial space (PAS-10x)

Fig. 6b. Photomicrograph of an adult rat testis, treated with Doxorubicin showing seminiferous tubules (S), with multinucleate giant cells and accentuated germ cell depletion (PAS-Iron Heamatoxylin 100x)

Fig. 7. Photomicrograph of an adult rat testis, treated with Doxorubicin and Nigella sativa, showing nearly normal seminiferous tubules (S) with marked regeneration of germinal epithelium (GE), completely bounded by basal membrane (BM), with leydig cell (LC) in contacted triangular interstitial spaces (IS) (PAS-Iron Heamatoxylin 10x)
Group Bo showed loss of architecture of seminiferous tubules and diverse level of atrophy with destroyed germinal epithelium; this could be due to the toxic effects of doxorubicin on germinal epithelium of seminiferous tubules. Our findings are supported by [11] who reported that Doxorubicin causes damage of germinal epithelium by oxidative stress. The mechanism of seminiferous tubule’s atrophy and destruction of germinal epithelium could be due to intercalation with DNA strand mention by [4] that doxorubicin reduces the luminal seminiferous tubular diameter and widen the interstitial space. It causes abnormalities of sperms like shapeless head, microcephaly, dual headed, disengaged head & diminutive tail. Our findings are in agreement with [5] who reported that doxorubicin causes temporary to permanent infertility. In present study the Interstitial spaces were widen with marked vacuolation in leydig cells this is in agreement with findings of [23] who state that doxorubicin with the dose, as per our study, causes marked widening of interstitial spaces and vacuolation of leydig cells due to atrophy of seminiferous tubules.

Study observations show improvement in histopathological findings of testes in group Co (treated Nigella sativa and Doxorubicin) Striking retrieval of germ cell line and sertoli cells. No multinucleate formations but there are some vacuolation seen in germ and non-germ cells. Triangular interstitial spaces consisting of leydig cells and small blood vessels were seen. Leydig cells seen in this group were less than group Ao but more than group Bo, this is in agreement with [15] who reported that aqueous suspension of Nigella sativa improves histopathological changes. Our findings are in agreement with [17,18,19] Same findings were also deliberated by [20] who reported that nigella sativa mends variations in sperm count, viability & testicular weight caused by Lead acetate.

4. CONCLUSION

This experimental research work revealed that diseased group showed loss of architecture of seminiferous tubules and diverse level of atrophy but in treated group variations are amended. Hence our hypothesis of this research work is that nigella sativa will reduce the harmful effects of doxorubicin.

CONSENT

It is not applicable.

ETHICAL APPROVAL

This study was carried out according to the guidelines of National Research Council Guide and in accordance with the principles of Good Laboratory procedure (GLP) following approval of the Institutional Ethical Committee on the Use and Care of Animals.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2022 Sundus et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/82858