A Study of Stability Indicating Development and Validation of a Method for Simultaneous Estimation of Brigatinib and Alectinib Using Reverse Phase Ultra Performance Liquid Chromatography in Active Pharmaceutical Ingredient Form

Gunturu Raviteja a* and Kantipudi Rambabu a

a Department of Chemistry, RVR & JC College of Engineering, Chowdavaram, Guntur-522019, Andhra Pradesh, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Author KR designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author GR managed the analyses of the study and the literature searches. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i9A35498

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/83324

Received 05 November 2021
Accepted 11 February 2022
Published 12 February 2022

ABSTRACT

Aims: New validated method for the simultaneous estimation of Brigatinib and Alectinib using UPLC and study of its degradation.

Place and Duration of Study: Department of Chemistry, RVR & JC College of Engineering, Chowdavaram, Guntur, Andhra Pradesh, between March 2021 and April 2021.

Methodology: Using Luna C18 100 x 2.6 mm, 1.6 µm column, acetonitrile, and 0.1 percent Tri ethyl amine (TEA) (80:20 v/v) as a mobile phase, the proposed method successfully achieved effective chromatographic separation with a flow rate of 1 mL/min and a wave length of 260 nm. The Brigatinib and Alectinib peaks were resolved within 5 minutes of elution time, with the Brigatinib peak eluting at 3.208 minutes and the Alectinib peak eluting at 1.757 minutes.

Results: The proposed method displays excellent linearity in the concentration ranges of 1.0 µg/ml to 15 µg/ml for Brigatinib and 5.0 µg/ml to 75 µg/ml for Alectinib. The RSD of robustness levels has a maximum of just 2 percent.
Conclusion: The accuracy, specificity, and sensitivity of the method were all found to be in line with ICH guidelines, when the procedure was developed and tested.

Keywords: ICH guide lines; RP-UPLC; Brigatinib; Alectinib; validation.

1. INTRODUCTION

Brigatinib, sold under the brand name Alunbrig among others, is a small-molecule targeted cancer therapy being developed by ARIAD Pharmaceuticals, Inc [1]. Brigatinib acts as both an anaplastic lymphoma kinase (ALK) [2,3] and epidermal growth factor receptor (EGFR) [4,5] inhibitor. Brigatinib could overcome resistance to osimertinib conferred by the EGFR C797S mutation if it is combined with an anti-EGFR antibody such as cetuximab or panitumumab [6]. Brigatinib is an inhibitor of ALK and mutated EGFR [7]. ALK was first identified as a chromosomal rearrangement in anaplastic large cell lymphoma (ALCL) [8,9]. Genetic studies indicate that abnormal expression of ALK is a key driver of certain types of non-small-cell lung cancer (NSCLC) [10,11] and neuroblastomas [12,13], as well as ALCL. Since ALK is generally not expressed in normal adult tissues, it represents a highly promising molecular target for cancer therapy. Epidermal growth factor receptor (EGFR) is another validated target in NSCLC. Additionally, the T790M “gatekeeper” mutation is linked in approximately 50 percent of patients who grow resistant to first-generation EGFR inhibitors. While second-generation EGFR inhibitors are in development, clinical efficacy has been limited due to toxicity thought to be associated with inhibiting the native (endogenous or unmutated) EGFR. A therapy designed to target EGFR, the T790M mutation but avoiding inhibition of native EGFR is another promising molecular target for cancer therapy [14].

Alectinib (INN, marketed as Alecensa) is an oral drug that blocks the activity of anaplastic lymphoma kinase (ALK) [15] and is used to treat non-small-cell lung cancer (NSCLC). Alectinib has a low potential for interactions. While it is metabolised by the liver enzyme CYP3A4 [16,17], and blockers of this enzyme accordingly increase its concentrations in the body, they also decrease concentrations of the active metabolite M4, resulting in only a small overall effect. Conversely, CYP3A4 inducers decrease alectinib concentrations and increase M4 concentrations. Interactions via other CYP enzymes and transporter proteins cannot be excluded but are unlikely to be of clinical significance. There are no contraindications under the US approval. The European approval only has the default remark about hypersensitivity [18] being a contraindication. Apart from unspecific gastrointestinal effects [19] such as constipation (in 34% of patients) and nausea (22%), common adverse effects in studies included oedema [20] (swelling; 34%), myalgia [21] (muscle pain; 31%), anaemia [22] (low red blood cell count), sight disorders, light sensitivity and rashes (all below 20%). Serious side effects occurred in 19% of patients; fatal ones in 2.8%. Chemical structures of Brigatinib and Alectinib were shown in Fig. 1.

![Chemical structures of (A) Brigatinib and (B) Alectinib](image-url)
To date, there have been no HPLC methods for Brigatinib and Alectinib estimation. Thus, the goal of the study is to predict Brigatinib and Alectinib, which is a pharmaceutical component, using RP-UPLC.

2. MATERIAL AND METHODS

2.1 Chemicals and Reagents

Merck (India) Ltd. provided acetonitrile, triethyl amine, and water in Worli, Mumbai, India. Glenmark Pharmaceuticals in Mumbai provided the APIs that served as reference standards for both Brigatinib and Alectinib.

2.2 Equipment

UPLC makes: The chromatographic device used was the Waters acquity, which included a quaternary pump, a PDA (photo diode array) detector, and the chromatographic programme Empower-2.0.

2.3 Chromatographic Conditions

UPLC system instrumentation was used to develop and validate the technique (Waters Acquity UPLC). Empower 2.0 software was used to process the data. Luna C\textsubscript{18} column (100 x 2.6mm, 1.6 µm) was selected for use in the experiment. The compound was purified by isocratic elution using a mobile phase of 0.1% triethylamine buffer solution and acetonitrile in a 20:80 ratio. The pump was adjusted to pump 1.0 ml/min. UV detection was conducted at a wavelength of 260nm. The injection volume was 10 microliters, and the diluent was the same as the mobile process.

2.4 Preparation of Standard Solution

To get 10 mg of Brigatinib and 50 mg of Alectinib working requirements, put the contents of a 100ml volumetric flask in a sonicator for 15 minutes to break up the solids. Dilute volume with 70ml of diluents. Dilute 5 mL to 50 mL by using diluents.

3. RESULTS AND DISCUSSION

The purpose of this study was to develop a simple, accurate, and rapid RP-UPLC method for simultaneous Brigatinib and Alectinib estimation. To optimize the chromatographic conditions, different ratios of buffers (phosphate buffer, 0.1% Ortho phosphoric acid, 0.1% formic acid and 0.1% tri ethyl amine) and the acetonitrile in the mobile phase with isocratic and gradient mode was tested. By using Acetonitrile and 0.1% formic acid (70:30) as mobile phase, the trial gave USP tailing of 1.02, 1.05 and USP resolution of 1.94 and USP plate count of 1763, 2442. The trial chromatogram was shown in Fig. 2.

Finally 0.1% tri ethyl amine buffer and acetonitrile with isocractic elution was selected because it results in a greater response of active pharmacy ingredients. During the optimization of the method various stationary phases such as C\textsubscript{8}, C\textsubscript{18} and amino, phenyl columns were tested. From these trials the peak shapes were relatively good with Luna C\textsubscript{18} column of 100 x 2.6 mm, 1.6 µ with a PDA detector. A buffer and acetonitrile mixture is part of the mobile process (20:80), the flow rate is 1.0ml/min and the column temperature is room temperature. Recovery data and peak sharpness are calculated based on finalization of diluent and standard solution concentrations, as well as injection volumes that are greater than the quantification maximum (LOQ). An isocratic concentration was used to achieve better resolution. Finally by using Luna C\textsubscript{18} (100 x 2.6mm, 1.6 µm) column, 0.1% Tri ethyl amine: ACN 20:80 as mobile phase we got the optimized chromatogram by satisfying all the suitability conditions.

3.1 Method Validation

The optimized RP-HPLC method was validated as per the ICH guidelines [23-25] with respect to system suitability, linearity and range, precision, accuracy, and robustness. As seen in Table 1, the optimized conditions for the defined and validated UPLC process are listed.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameter</th>
<th>Method Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Column</td>
<td>Luna C\textsubscript{18} 100 x 2.6mm, 1.6 µm</td>
</tr>
<tr>
<td>2</td>
<td>Flow rate</td>
<td>1 ml/min</td>
</tr>
<tr>
<td>3</td>
<td>Wave length</td>
<td>260nm</td>
</tr>
<tr>
<td>4</td>
<td>Injection Volume</td>
<td>10µl</td>
</tr>
<tr>
<td>5</td>
<td>Run time</td>
<td>5 min</td>
</tr>
<tr>
<td>6</td>
<td>Mobile phase</td>
<td>0.1% Tri ethyl amine : ACN 20:80</td>
</tr>
</tbody>
</table>
Fig. 2. Chromatogram of trial-1

Fig. 3. Chromatogram of blank

Fig. 4. Chromatogram of standard

Table 2. Results of system suitability

<table>
<thead>
<tr>
<th>S. No</th>
<th>System suitability parameter</th>
<th>Acceptance criteria</th>
<th>Drug Name</th>
<th>Brigatinib</th>
<th>Alectinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>% RSD</td>
<td>Not more than 2.0</td>
<td>1.41</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>USP Tailing</td>
<td>Not more than 2.0</td>
<td>1.02</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>USP Plate count</td>
<td>Not less than 3000</td>
<td>3674</td>
<td>5692</td>
<td></td>
</tr>
</tbody>
</table>
3.1.1 Specificity

Fig. 3 is completely blank. No chromatographic interference was observed for placebo and blank samples at the retention times of Brigatinib and Alectinib.

3.1.2 System suitability

To run the UPLC, the standard solution was added to the system, and it was found that the system suitability parameters were in an acceptable range. The RSD percentage was determined using the average RSD (relative standard deviation) peak areas. The percentage of identical injections from the RSD fell within the recommended range. Table 2 and Fig. 4 show the obtained results.

3.1.3 Linearity

For Brigatinib, linearity concentrations of 1.0 µg/ml to 15 µg/ml were prepared, while for Alectinib, ranged from 5.0 µg/ml to 75 µg/ml. The regression equations for Brigatinib (CC=0.9998) and Alectinib (CC=0.9998) were Y=52460.56x+462.64 and Y=60857.74x+8129.19, respectively. Table 3 showed the results, and Fig. 5 depicted the linearity map.

3.1.4 Limit of detection and quantification

LOD and LOQ were calculated with the calibration curve method. A known RP-UPLC procedure was used to calculate the compound's LOD and LOQ by injecting standard solutions in increasing concentrations. In order to determine LOD and LOQ, the slope approach was employed, with LOQ being calculated as 10x/S and LOD as 3.3x/S, where S is the calibration curve slope and is the response standard deviation. Brigatinib’s LOD and LOQ concentrations were 0.013µg/ml and 0.043 µg/ml and Alectinib’s were 0.063 µg/ml and 0.208 µg/ml respectively.

Table 3. Results of linearity

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Conc. (µg/ml)</th>
<th>Area</th>
<th>Conc. (µg/ml)</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity-1</td>
<td>1.00</td>
<td>51812</td>
<td>5.00</td>
<td>303157</td>
</tr>
<tr>
<td>Linearity-2</td>
<td>2.50</td>
<td>127837</td>
<td>12.50</td>
<td>798487</td>
</tr>
<tr>
<td>Linearity-3</td>
<td>5.00</td>
<td>262790</td>
<td>25.00</td>
<td>1501250</td>
</tr>
<tr>
<td>Linearity-4</td>
<td>7.50</td>
<td>396985</td>
<td>37.50</td>
<td>2331664</td>
</tr>
<tr>
<td>Linearity-5</td>
<td>10.00</td>
<td>531081</td>
<td>50.00</td>
<td>3030781</td>
</tr>
<tr>
<td>Linearity-6</td>
<td>12.50</td>
<td>662775</td>
<td>62.50</td>
<td>3793848</td>
</tr>
<tr>
<td>Linearity-7</td>
<td>15.00</td>
<td>777061</td>
<td>75.00</td>
<td>4585293</td>
</tr>
</tbody>
</table>

Slope 52460.56 60857.74
Intercept 462.64 8129.19
CC 0.9998 0.9998

![Fig. 5. Calibration plots of (a) Brigatinib and (b) Alectinib](image)
3.1.5 Precision

To pinpoint the accuracy of the procedure, the entire analytical process was put to the test by evaluating standard solution preparation and the end results. At least six different determinations were employed to establish repeatability, and the relative standard deviation was established using this information. Based on the data found in Table 4 the following points are made, sample chromatogram was shown in Fig. 6.

Table 4. Results of method precision

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Std Conc.</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigatinib</td>
<td>10</td>
<td>1.27</td>
</tr>
<tr>
<td>Alectinib</td>
<td>50</td>
<td>0.62</td>
</tr>
</tbody>
</table>

3.1.6 Accuracy

The method's accuracy was confirmed through the recovery experiments on three different levels (50 percent, 100 percent and 150 percent). Preparations containing Brigatinib concentrations of 5, 10, and 15 micrograms per millilitre and Alectinib concentrations of 25, 50, and 75 micrograms per millilitre were created. The 98 to 102 percent recovery percentages were found. The accuracy findings for Brigatinib and Alectinib were presented in Table 5.

Table 5. Results of accuracy

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brigatinib</td>
</tr>
<tr>
<td>50*</td>
<td>100.0</td>
</tr>
<tr>
<td>100*</td>
<td>99.4</td>
</tr>
<tr>
<td>150*</td>
<td>99.0</td>
</tr>
</tbody>
</table>

* Results are mean recovery of three sample preparations

3.1.7 Ruggedness

Six duplicates of a standard solution were sampled on a separate day, using a different analyst and device. Means and % RSD values were obtained for locations of maximum peaks. Findings found in Table 6 are shown in the chart below.

Table 6. Results of intermediate precision

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Std. Conc.</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigatinib</td>
<td>10</td>
<td>0.88</td>
</tr>
<tr>
<td>Alectinib</td>
<td>50</td>
<td>1.41</td>
</tr>
</tbody>
</table>

3.1.8 Robustness

Despite a small flow rate variance (0.2ml) and organic solvent (10 percent) in its chromatographic condition, no significant difference in RSD is made in robustness. Findings are shown in Table 7.

3.1.9 Forced degradation

This proposed method is effective for both release and stability studies, and as such, can be seen as a better technique for stability. Acid, base, oxidation, reduction, and thermal degradation are all part of the forced degradation study required by the ICH requirements. Dependent on the type of chromatography used, it is apparent that the drugs under consideration were stable during the stress testing even though degraded peaks were observed (Table 8). Acid degradation and Peroxide degradation chromatograms were shown in Figs. 7 and 8.
Table 7. Results of robustness

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameter name</th>
<th>% RSD for purity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Brigatinib</td>
</tr>
<tr>
<td>1</td>
<td>Flow (0.8ml/min)</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>Flow (1.2ml/min)</td>
<td>0.84</td>
</tr>
<tr>
<td>3</td>
<td>Organic solvent (+10%) (88:12)</td>
<td>0.57</td>
</tr>
<tr>
<td>4</td>
<td>Organic solvent (-10%) (72:28)</td>
<td>0.71</td>
</tr>
</tbody>
</table>

3.1.9.1 Acid degradation

The acid degradation method involves introducing 1ml of 1N HCl to a 50ml volumetric flask, heating the flask for 30 minutes at 60°C, then marking the flask with diluent before adding 1ml of 1N NaOH. The final product is obtained after filtering the solution using a 0.45 nylon syringe filter.

3.1.9.2 Alkali degradation

The alkali degradation process begins with the measurement of 50ml of standard solution, followed by the addition of 1ml of 1N NaOH, which is then heated at 60°C for 30 minutes. This is followed by the addition of 1ml of 1N HCl, and the process is ended by diluting the mixture. The final product is obtained after filtering the solution using a 0.45 nylon syringe filter.

3.1.9.3 Peroxide degradation

The following procedure was used to decompose the materials: The solutions, 5 mL of normal solution and 1 mL of 30% H2O2, are placed in volumetric flasks, then warmed for 30 minutes at 60°C and allowed to cool before combining with diluent. The solution can be filtered using a 0.45 nylon syringe filter.

3.1.9.4 Reduction degradation

The degrading protocol was as follows: In a 50 mL volumetric flask, 5 mL of normal solution is put in, followed by 1 mL of 30% sodium bicarbonate solution. The entire contents are then heated to 60°C for 15 minutes, and then cooled down to 40°C. To filter the solution, use a 0.45-micron nylon syringe filter.

3.1.9.5 Thermal degradation

The test product was put in an oven heated to 105°C for six hours and then refluxed for 30 min at 60°C. The solution was injected into the UPLC system as a result.

3.1.9.6 Hydrolysis degradation

Standard solution of 5 ml is placed in to a 50 ml volumetric flask, and 2 ml of UPLC water is added. The flask is then heated to 60°C for 15 minutes before chilling with diluent. To filter the solution, use a 0.45-micron nylon syringe filter.

3.1.9.7 Photo degradation

A technique was performed where the standard solution was exposed to the sun for 12 hours, and then 60°C refluxed for 30 minutes. The UPLC technique requires normal water injection.

Table 8. Results of forced degradation

<table>
<thead>
<tr>
<th>Degradation Condition</th>
<th>% Degradation of Brigatinib</th>
<th>% Degradation of Alectinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid Degradation</td>
<td>14.2</td>
<td>11.8</td>
</tr>
<tr>
<td>Alkali Degradation</td>
<td>13.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Peroxide Degradation</td>
<td>13.2</td>
<td>15.4</td>
</tr>
<tr>
<td>Reduction Degradation</td>
<td>14.9</td>
<td>13.8</td>
</tr>
<tr>
<td>Thermal Degradation</td>
<td>1.5</td>
<td>1.9</td>
</tr>
<tr>
<td>Photolytic Degradation</td>
<td>0.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Hydrolysis Degradation</td>
<td>0.9</td>
<td>1.5</td>
</tr>
</tbody>
</table>
4. CONCLUSION

In this article we present a simple, selective, validated and well defined stability that shows isocratic RP-UPLC methodology for the quantitative determination of Capecitabine and Docetaxel. All degradation products produced during stress conditions and the peaks were well separated and well resolved with an adequate retention time, indicating that the proposed method is quick, simple, feasible and affordable. Therefore the evolved chromatographic method can be effectively applied for regular investigation in drug research.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

The authors express their appreciation to Professor Dr. Kantipudi Rambabu for offering helpful advice and guidance. I want to thank the research facility, Vijayawada, India, at full to Shree icon pharmaceutical laboratories, as they allowed this research to take place.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

24. ICH, Q2 (R1) validation of analytical procedures: Harmonized tripartie guideline text and methodology current step 4 version.

25. ICH, Q2 (R1) validation of analytical procedures: international conference on harmonization; 1994.

© 2022 Raviteja and Rambabu: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/83324