Antibacterial, Antioxidant and Cytotoxic Studies of the Essential Oil and Ethanol Extract of Aerial Parts of *Artemisia rutifolia* Steph.ex. Spreng

Amarjargal Ayurzana a*, Irekhbayar Jambal b, Nandintsetseg Boldkhuu a, Bayarhuu Batbayar c, Elena P. Romanenk d and Altantsetseg Shatar e

a Department of Chemistry and Biology, School of Natural Science and Technology, Khovd State University, Jargalant Soum, Khovd Aimag, 84140, Mongolia.
b Department of Chemistry, School of Arts and Sciences, National University of Mongolia (NUM), Baga Toiruu, Sukhbaatar District, Ulaanbaatar 14201, Mongolia.
c Department of Geography and Geology School of Natural Science and Technology, Khovd State University, Jargalant Soum, Khovd Aimag 84140, Mongolia.
d Novosibirsk Institute of Organic Chemistry SB of RAS, 9 Lavrentiev Ave, Novosibirsk, 630090, Russia.
e Institute of Chemistry and Chemical Technology, Mongolian Academy of Science, 4th Building Enkhtaivan Avenue, Ulaanbaatar 210351, Ulaanbaatar, Mongolia.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i9A35489

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/80743

Received 24 November 2021
Accepted 29 January 2022
Published 11 February 2022

ABSTRACT

Mongolia is rich in medicinal plants. In recent years, interest in plant-derived food additives has grown. This study was aimed to evaluate antioxidant, cytotoxic activities of aerial parts ethanol extracts from *Artemisia rutifolia* Steph.ex Spreng grown in Mongolia. The essential oil composition variability of *A. rutifolia* Steph.ex Spreng aerial parts collected from three different slopes of Kharkhira mountain was assessed by gas chromatography mass spectrometry (GC/MS). Chromatographic analysis of *A. rutifolia* Steph.ex Spreng essential oils showed the predominance of monoterpenic hydrocarbons represented mainly by santolina triene, β-myrcene. The antioxidant and cytotoxic activities of the essential oil and ethanol crude extracts were determined by using

*Corresponding author: E-mail: Amar731012@yahoo.com;
DPPH and MTT assays. The antioxidant activity of *A. rutifolia* Steph.ex Spreng ethanol extract is 2.12 times higher than the antioxidant activity of the essential oil. The essential oil of *A. rutifolia* Steph.ex Spreng with a concentration of 150 mg/ml or 3μg/disk inhibits the growth of *S. enterica* 9.3 ± 0.76 mm, *B. subtilis* 10.3 ± 0.58 mm, *S. aureus* 9.6 ± 1.5 mm and has a moderate bacterial activity. The results clearly showed that the essential oil presented satisfactory cytotoxic activity against two human tumor cell lines HepG2 (human liver cancer cell line); AGS (human stomach cancer cell line). Our work revealed that the ethanol extracts and essential oil of *Artemisia rutifolia* Steph.ex Spreng grown in Mongolia has potential as sources of new antioxidant, and cytotoxic compounds, respectively. Essential oil of *A. rutifolia* Steph.ex Spreng contains caryophyllene-7.19% and caryophylline oxide-5.82%, so the essential oil at a dose of 25 mg/ ml inhibits the growth of human stomach cancer cell (AGS). The results of the study were certified by the utility model certificate of “Soap Fragrance Elixir” with the registration number 20-003068.

Keywords: Artemisia rutifolia Steph.ex Spreng; essential oil; antimicrobial; antioxidant and cytotoxic activities.

1. INTRODUCTION

The genus *Artemisia* (Asteraceae) consists of about 500 species, distributing throughout the world, one of the most numerous plant groupings, which comprises about 1000 genera and over 20000 species [1,2].

The genus consists of a small herbs and shrubs, found in northern temperate regions and comprises of about 500 species from South Asia, North America, and European countries [3]. In Mongolia, 103 Artemisia species have been found [4].

The Artemisia species have wide and various applications to the plant and human disease control, as well as in the pharmaceutical industry [5].

Artemisia has indiscriminately served as a treatment for maladies such as viruses, malaria, bacteria, hepatitis, fungi, cancer, and inflammation [6].

The most important derivatives of *Artemisia annua* L. are arteether, artemether, artemiside, artemisinin, artemisone, artesunate, and dihydroartemisinin.

Artemisinin also use against some cancers such as liver cancer, brain glioma, leukemia, nasopharyngeal cancer, gallbladder cancer, gastric cancer, cervical cancer, lung cancer, breast cancer and colon cancer [7].

*Artemisia rutifolia* Steph.ex Spreng grows in Afghanistan, China, India, Kazakhstan, Kyrgyzstan, Mongolia, Nepal, Pakistan, Russia and Tajikistan [8].
plant is also used against fever and stomach worms [14].

In Mongolian traditional medicine, the leaves of *A. palustris* show the beneficial influence for treatment of skin diseases, while the seeds are useful for treatment of bronchitis and tuberculosis [15].

Essential oil of *Artemisia macrocephala* Jacquem. ex Besser, especially hamazulene shows anti-inflammatory and anesthetic activities [16].

Essential oil of *A. rutifolia* Steph. ex Spreng kills bacteria, fungi and parasites [17].

The herb in Mongolian-Tibetan medicine is used for yellowing of the eyes, violations of the regulatory system mkxhris (the system responsible for food rhenium, absorption, energy processes, assimilation) and Botkin's disease [18].

The aim of this study was to evaluate the antioxidant and cytotoxic effects of essential oil and ethanol extract from *A. rutifolia* Steph. ex Spreng grown in Mongolia.

The antioxidant activities of the essential oil and the ethanol extracts were tested by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay.

The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide (MTT) colorimetric method was used for determining cytotoxic activity of samples.

To the best of our knowledge, there are no published reports on the biological activities of the essential oil and ethanol extracts of *A. rutifolia* Steph. ex Spreng grown in Mongolia. Therefore, it is important to develop a better understanding of their mode of biological action for new application in human health.

2. METHODS

2.1 Chemicals

Dimethyl sulfoxide (DMSO), and DPPH were purchased from Millipore-Sigma (Germany) and WST was purchased from DoGen (Korea). RPMI 1640 medium and fetal bovine serum were purchased from GibCO (USA). Penicillin and streptomycin were purchased from Himedia (India).

The human hepatocellular cell line (*HepG2*) and human gastric cancer cell lines (*AGS*) were purchased from ATCC (USA). All other chemicals were of analytical grade and purchased from Millipore-Sigma (Germany) and DUKSAN Co. (Korea).

2.2 Plant Materials

Samples were collected from Kharkhiraa Mountain in September 2019 in Uvs aimag, Mongolia. Voucher specimens have been deposited in the herbarium of the Khovd State University, Mongolia.

2.3 Isolation and Analysis of the Essential Oil

The aerial parts (1.1 kg) of the freshly collected plants were finely chopped and hydro-distilled for 3 h using a Clevenger-Adams type apparatus [19]. The yield of the essential oil produced during the steam distillation was 0.96% (v/w). The oil was then stored at 4°C prior to analysis.

The GC-MS analysis of the essential oil sample was carried out using a Agilent 6890 gas chromatograph equipped with mass selective detector MSD 5973 (Agilent) on capillary column HP5 (5% diphenyl and 95% dimethylsiloxane, 30 m x 0.25 mm x 0.25 μm (film thickness).

The temperature of injector was 280°C. The column temperature was programmed as follows: 2 min at 50°C, temperature increase at a rate of 4 deg/min to 240°C and then at a rate of 20 deg/min to 280°C, isothermal period of 5 min. Helium was used as a carrier gas (1.0 ml/min).

MS conditions were as follows: ionization voltage of 70 eV, acquisition mass range 30–650, data acquisition rate of 1.2 scan/s. 1.0 µl of sample (solution of the essential oil in hexane, 8.0 µl per 0.5 ml) was injected in a split mode with split ratio 100:1. A mixture of normal hydrocarbons C₈–C₂₄ was added to the sample as a standard for determining linear retention indices.

Essential oil components were identified by comparison of their full mass spectra and linear retention indices (RI) with these parameters for authentic samples listed in the handbook [20].
Essential oil components were identified by comparison of their mass spectra and linear retention indices (relative to C8–C24 alkanes) with those reported in database developed in our laboratory [21,19,33].

2.4 Extraction and Fractionation

The air-dried and powdered whole plant (150 g) was extracted with 99% ethanol (2 L × 3) using sonicator under room temperature. The resultant extracts were combined and evaporated in a rotary vacuum evaporator (Buchi R-205, Switzerland) at 40°C to afford crude extracts. The obtained ethanol crude extract was weighed (30g) and stored in the refrigerator for the later analysis.

2.5 Determination of the Antioxidant Activity

The assay was carried out according to the method of Brand-William et al. [20] to investigate the free radical scavenging activity of samples. Briefly, the samples were dissolved in ethanol at the concentration of 100 mg/ml and then serially diluted by ethanol.

On each well of a 96-well plate, 100 μl of samples of different concentration were mixed together with 100 μl of 60 μM DPPH prepared in ethanol. After incubation of 20-30 minutes for reaction, the absorbance of supernatants was measured at 517 nm by using Multi-detection Reader (Bio Tek Co.). Ethanol was used as negative control and α-tocopherol as positive control. The scavenging capacity (SC) of the sample was calculated using the following formula:

\[
SC \, (\%) = \frac{[1-AS]}{AC} \times 100
\]

Where, AS=is the net absorbance of the sample, AC=is the net absorbance of negative control. The IC50 value of a sample is the concentration of sample at which 50% activity of DPPH (absorbance) is inhibited. It was calculated by linear regression.

2.6 Determination of Antimicrobial Activity

To investigate the antimicrobial activity of essential oil and ethanol extract from *A. rutifolia* Steph.ex Spreng, we evaluated its effect on four different bacteria, such as *S. enterica*, *B. subtiliss*, *S. aureus*, *E. coli* by Agar diffusion method.

2.7 Determination Cytotoxic Activity

HepG2 cell was cultured in RPMI-1640 medium supplemented with 0.2% sodium bicarbonate, 1% penicillin-streptomycin and 10% fetal bovine serum at 37°C in 5% CO2 incubator. The four samples were prepared as 30 mg/ml stock solutions in DMSO. The HepG2 cell was treated by samples with final concentration of 300 μg/ml, 100 μg/ml, 50 μg/ml, 25 μg/ml and 10 μg/ml, and incubated for 24 hours.

RPMI-1640 medium with 10% WST was added to the treated cells. After 1-hour incubation, the cultured cells were quantified by spectrophotometer, measuring the absorbance of the dye solution at 450 nm. Results of each extract were compared to that of DMSO only treated control cells, 1% v/v DMSO. The IC50 was calculated for each sample by IC50 Calculator by AAT Bioquest. Avoiding the possibility of metabolic activity alteration thus tetrazolium dye reduction without affecting cell viability, the results were then checked under microscope by examination of live condition [22].

3. RESULT AND DISCUSSION

3.1 Composition of Essential Oil

The composition of essential oil from *A. rutifolia* Steph.ex Spreng is presented in the Table 1.

We were able to identify only 28 components representing more than 88% of the total oil. The main constituents were found to be santolina triene (more than 22%) and β-myrcene (more than 21%).

A comparison of the chemical composition of essential oil of *Artemisia rutifolia* Steph.ex Spreng is shown. Table-2.

Essential oils of Mongolian *Artemisia rutifolia* Steph.ex Spreng include α-pinene, β-pinene, camphene, sabine, β-myrcene, 1,8 cineole, camphor, terpine-4-ol, β-elemene, Caryophyllene and spatulenol. Containing compounds such as α-pinene, camphene, sabine, 1,8-cineol, camphor this species is characterized by the hemotype characteristics of *A. rutifolia* Steph.ex Spreng essential oil.
For the first time, 17 terpent compounds were determined in essential oil from *A. rutifolia* Steph.ex Spreng, including santolina triene, pseudo-limonene, α-cedrene, caryophyllene, humulene, dehydro-sesquiolin, selina-4,11-diene, germacrene-D, valencene, α-selinene, α-bulnesene, γ-cadinene, δ-cadinene, cedrol, eremoligenol, α-bisabolol and aciphiylic acid[35-37].

### 3.2 Antioxidant Activity

DPPH is free radical compound that has been widely used to determine free radical scavenging activity [20].

The effect of antioxidant on DPPH radical scavenging was thought to be due to their hydrogen donating ability or radical scavenging activity. When a solution of DPPH is mixed with that of a substance that can donate a hydrogen atom, then this gives rise to the reduced form DPPH (non radical) with the loss of this violet color [23].

The DPPH assay is used to analyze antioxidant activities by mechanism in which antioxidants act to inhibit lipid oxidation, so scavenging of DPPH radical and therefore determine free radical scavenging capacity. The method was applied according to Brand-Williams et al. [20].

Ethanol extract was dissolved in dimethyl sulfoxide (DMSO) to obtain a stock solution (30 mg/mL) for antioxidant assays. The extract was prepared by two times dilution method in 96-well microtiter plate. Also, Gallic acid standard solutions were prepared in 96 well micro liter plate for building of standard curve, which is used for calculation of antioxidant activity of samples.

The final results were expressed as ug/ml of Gallic acid equivalent (Table-2).

The antioxidant activity of *A. rutifolia* Steph.ex Spreng ethanol extract is 2.12 times higher than the antioxidant activity of the essential oil.

### 3.3 The Process of Preperation of the Soap Fragrance using the Essential Oil of *Artemisia rutifolia* Steph.ex Spreng.

The acidity, pH, and antibacterial activity of soap fragrances were determined by the National Food Safety Reference Laboratory of the General Agency for Specialized Inspection of Mongolia.

The number of acids in soap fragrances was determined by titration method, the solution environment by standard method /MNS1474: 2000/, the acid number by standard method /MNS1131: 2018/, bactericidal ability by standard method /MNS6236: 2011/, alcohol content by standard method /MNF-2011/, the amount of *Escherichia coli* bacteria by the standard method /MNS1595: 2017/, the amount of *Staphylococcus aureus* bacteria by the standard method /MNS1636: 2017/ and the amount of *Pseudomonas aruginosa* bacteria was determined by the standard method /MNS2173: 2017/[24-30].

The environment and acid number of “Soap fragrance” elixir which was made using essential oil *A. rutifolia* Steph.ex Spreng were determined /Table-4/[31].

General chemical specifications of soap fragrance elixir is pH 4.48, number of acids-1.80mg/g, amount of alcohol 54.8%[31].

### 3.4 Cytotoxic Activity

To investigate the cytotoxic activity of ethanol extracts and essential oil from *A. rutifolia* Steph.ex Spreng, we evaluated its effect on a selection of liver cancer cell line HepG2 and human stomach cancer cell line AGS by Rapid colorimetric assay.

These cell lines were submitted to growing concentrations of essential oil and ethanol extract *A. rutifolia* Steph.ex Spreng for 24 hours. As shown in Figs 2-5, the essential oil of plant significantly active against chosen human cancer cell lines tested the ethanol extract (See Figs 2-5).

### 3.5 Antimicrobial Activity

To investigate the antimicrobial activity of essential oil and ethanol extract from *A. rutifolia* Steph.ex Spreng, we evaluated its effect on four different bacteria, such as *S. enterica*, *B. subtilius*, *S. Aureus*, *E. coli* (See Table 3).

### 4. CONCLUSION

In recent years, interest in plant-derived food additives has grown. Plant extracts might substitute synthetic food antioxidants, which may
influence human health when consumed chronically [34].

This study on essential oil chemical composition and biological activities of *A. rutifolia* Steph. ex Spreng grown in Mongolia were not well performed before.

Essential oils hydrodistilled from *A. rutifolia* Steph. ex Spreng were found to be rich in santolina triene, β-myrcene 1,8 cineol, camphor, caryophyllene, caryophyllene oxide.

The essential oil of *A. rutifolia* Steph. ex Spreng with a concentration of 150 mg/ml or 3μg/disk inhibits the growth of *S. enterica* 9.3 ± 0.76 mm, *B. subtiliss* 10.3 ± 0.58 mm, *S. aureus* 9.6 ± 1.5 mm and has a moderate bacterial activity.

The antioxidant activity of the ethanol extracts were moderate than essential oil. The results clearly showed that the ethanol extracts presented satisfactory cytotoxic activity against 2 human cancer cell lines tested. The results of this work also demonstrate the potential of *A. rutifolia* Steph. ex Spreng ethanol extracts as a new antioxidant and cytotoxic agents for human health.

Essential oil of *A. rutifolia* Steph. ex Spreng contains caryophyllene-7.19% and caryophyllene oxide-5.82%, so the essential oil at a dose of 25 mg/ml inhibits the growth of human stomach cancer cell (AGS).


The results of the study were certified by the Utility model certificate of “Soap Fragrance preparation” with the registration number 20-003068.

**SUPPLEMENTARY MATERIALS**

Supplementary materials available in this link: https://www.journaljpri.com/index.php/JPRI/libraryFiles/downloadPublic/28

**CONSENT**

It is not applicable.

**ETHICAL APPROVAL**

It is not applicable.

**ACKNOWLEDGEMENTS**

This research was supported by grant #ShuCc-2019/11 (Research on antibacterial and anti-cancer activity of some species of *Artemisia L*) for the funded by the Science and Technology Fund of Mongolia.

We are also grateful thanks to (Ph.D) Romanenko Elena Petrovna and prof Tkachev Alexey Vasilyevich, Novosibirsk Institute of Organic Chemistry, SB of RAS Russia.

**COMPETING INTERESTS**

Authors have declared that no competing interests exist.

**REFERENCES**

17. Volodya TS. Methodology of using Mongolian medicinal plants in hospitals UB. 2015;270.
24. MNS1474: The number of acids in soap fragrances was determined by titration method, the solution environment by standard method; 2000.
25. MNS1131: The acid number by standard method; 2018.
27. MNF-Alcohol content by standard method; 2011.
28. MNS1595: The amount of Eschirichia coli bacteria by the standard method; 2017.
29. MNS1636: The amount of Staphylococcus aureus bacteria by the standard method; 2017.
30. MNS2173: The amount of Pseudomonas aruginosa bacteria was determined by the standard method Сууңдө нөө мүү; 2017.
32. Sokolov PD. Plant resources of the USSR (Flowering plants, their chemical


36. Shatar S. Chemical studies of monosesquiterpene compounds of essential oils in Mongolia, the regularity of their biogenesis Dissertation for the degree of Doctor of Chemical Sciences in the form of a scientific report, Ulaanbaatar. 1993; 47.

37. Amarjargal A. Chemical composition of essential oil of some Artemisia’s species of Mongolian Western region and research of dynamics Ulaanbaatar. 2007;145.


© 2022 Ayurzana et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/80743