Observational Study Comparing the Safety and Efficacy of Igel Supraglottic Airway Device Insertion in Anesthetised Patients by Anesthesia Faculty versus Residents

Bhavini Shah a, Dipanjali Mahanta a*, Krusha Shah a and Jayalaxmi Mohan a

* Department of Anaesthesiology, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra-411018, India.

ABSTRACT

Aims: Successful airway management is the first priority in a variety of emergency care and hospital scenarios. This study was an attempt to compare and find out how quickly a first-time resident can learn to insert an I-gel and secure the airway versus their trained counterparts, thereby proving the effectiveness of this I-gel innovation in airway patency maintenance.

Study Design: Observational cross-sectional study.

Place & Duration of Study: Department of Anaesthesiology, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411018 India, from August 2021 to December 2021.

Methodology: Two groups of 80 patients belonging to ASA grade I and II, aged between 18 to 65 years, including either gender, posted for elective surgery under GA requiring I-gel Supraglottic Airway device (SAD) insertion, with informed consent. The patients underwent I-gel SAD insertion by Anaesthesia Faculty & Anaesthesia Residents respectively. Baseline vital hemodynamic parameters, the time taken for insertion, number of attempts made and the serial heart rate, arterial
Pressure, SpO2 and respiratory rate noted at the time of insertion and at one, three- and five-
minutes following insertion were noted.

Results: Faculty group outperformed the residents with regards to number of attempts taken and
time taken for each attempt, however the numbers in both groups are still comparable with no stark
differences.

Conclusions: There’s a very short & easy learning curve for successful i-gel® insertion by novice
practitioners as well as paramedical workers, which can be utilized during a variety of emergency
care and pre-hospital scenarios with adequate training to ensure adequate airway protection.

Keywords: Laryngeal masks; intubation; airway management; cardiopulmonary resuscitation.

ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA</td>
<td>American Society of Anaesthesiologists</td>
</tr>
<tr>
<td>cLMA</td>
<td>Classical Laryngeal mask airway</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic Blood pressure</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>Etc</td>
<td>Et cetera</td>
</tr>
<tr>
<td>G</td>
<td>Gauge</td>
</tr>
<tr>
<td>GA</td>
<td>General Anaesthesia</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
</tr>
<tr>
<td>I.V. or IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>Inj</td>
<td>Injection</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>LMA</td>
<td>Laryngeal mask airway</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean arterial Blood pressure</td>
</tr>
<tr>
<td>mcg Or µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>SAD</td>
<td>Supraglottic Airway device</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic Blood pressure</td>
</tr>
<tr>
<td>SLIPA</td>
<td>streamlined pharyngeal airway</td>
</tr>
<tr>
<td>SpO2</td>
<td>Peripheral Oxygen saturation</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

Successful airway management is the first priority in a variety of emergency care and pre-
hospital scenarios [1,2]. Though tracheal intubation remains the gold standard in securing
airway, it is a relatively difficult skill to acquire and can prove risky when performed by non-
anaesthetic personnel. In contrast supraglottic airway devices are considered relatively safe and
easy to use by operators with limited airway management experience. The I-gel™ (Intersurgical Ltd, Wokingham, UK) is a single use supraglottic airway device with a non-
inflatable cuff and drain tube, for use in anesthesia during spontaneous or intermittent
positive pressure ventilation [3-6].

Till date, there has been a dichotomy of views
regarding the safe and efficacious use of the various supraglottic airway devices by newly
trained physicians or paramedical workers, for

achieving successful securing the airway, with
minimal training, especially in medical
emergencies [7-9].

With respect to all the plethora of divergent views
regarding the efficiency of the I-gel, our study
was an attempt to compare and find out how
quickly a first-year resident can learn to
successfully insert an I-gel and secure the airway
versus their trained counterparts, thereby proving
its ease of use & effectiveness in establishing
airway patency.

2. METHODOLOGY

Two groups of 80 patients belonging to ASA
grade I and II, between 18 to 65 years, of either
gender, posted for elective surgery under GA
requiring I-gel Supraglottic Airway device (SAD)
insertion, with informed consent were included in
the study. Patients belonging to ASA grade III-IV,
with cardiac, neurological, and respiratory
diseases, or with a full stomach, emergency
cases, or patients scheduled for head and neck
surgery were excluded from the study. The
patients were randomized into two groups (group
F and group R) using the equal group random
allocation method. Guidelines for strengthening
the reporting of observational studies in
epidemiology (STROBE) for observational cohort
studies were used.

After detailed pre-anesthetic evaluation & routine
investigation, preoperative fasting status (6
hours) was confirmed, 20G intravenous (IV)
cannula secured & basic monitors like pulse
oximetry, non-invasive blood pressure, and
standard 3-lead electrocardiography (ECG) were
applied. Baseline heart rate (HR), systolic blood
pressure (SBP), diastolic blood pressure (DBP),
mean arterial blood pressure (MAP), SpO2, and
respiratory rate (RR) were recorded.

Premedicated with Inj. Glycopyrrolate 0.004
mg/kg Inj. Ondansetron 0.1 mg/kg IV, Inj.
Midazolam 0.02 mg/kg IV and inj. Fentanyl 2µg/kg IV. Induced with injection propofol 3mg/kg. Face mask ventilation with 100% oxygen, 60% nitrous oxide, and 1-1.5 vol% of Sevoflurane until adequate jaw relaxation for device insertion was achieved. The resident volunteers were made to stand at the head end of the patient and each volunteer was allowed I-gel insertion using standard techniques, under the supervision of a senior anesthesiologist. Each attempt was timed using a stopwatch. Bilateral equal chest rise and a square wave on the capnograph were taken as the endpoint of a successful insertion. The insertion time is defined as the time from the end of mask ventilation to the commencement of ventilation through I-gel.

If these findings are not present, then the resident is made to re-insert the device. The attempts were considered a failure if the effective airway was not attained after three attempts. Then the senior anesthetist took over. The time taken for successful insertion, the number of attempts made, and the serial heart rate, arterial pressure, SpO2, and respiratory rate were noted at the time of insertion and one, three- and five minutes following insertion were noted. Similar parameters were observed in the Anaesthesia faculty group as well.

Patients maintained oxygen and nitrous oxide (50-50%) and sevoflurane (1-1.5 vol%) on spontaneous respiration throughout the procedure as no muscle relaxant was used. At the end of the procedure, all the patients were kept on 100% oxygen. Upon spontaneous eye-opening and following verbal commands, oral suctioning was done and the I-gel airway device was removed. Any buccal mucosal, lip, and/or teeth injury or bloodstain on the device was recorded.

2.1 Statistical Analysis

Continuous variables like Age, Heart Rate, Mean Arterial Pressure are compared across the two groups using unpaired t-test. An alpha level of 5% was taken, i.e., if any p-value is less than 0.05 it is considered significant. Paired t-test was used to compare the two means.

3. RESULTS

All forty I-gel insertion attempts were successful on the very first attempt in the anaesthesia faculty group (group F). Whereas, in the resident group (group R), thirty-two I-gel insertion were successful on the first attempt, followed seven successful second attempts & one successful third attempt. None of the residents had a failed third attempts, hence all attempts were considered successful.

As per the graph, there were thirty-two successful first attempt insertion and commencement of manual ventilation in the resident group in comparison to all successful first attempt insertion and ventilation in the faculty group.

Graph 1. Number of attempts taken by both the groups
Table 1. Mean age, male to female ratio, mean heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure and respiratory rates in both groups at various intervals

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group F</th>
<th>Group R</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>36.45 ± 11.56</td>
<td>37.12 ± 14.7</td>
<td>0.15</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>24</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>16</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Mean Heart Rate (beats/minute)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>82.55±7.42</td>
<td>81.15±8.87</td>
<td>0.441</td>
</tr>
<tr>
<td>During I-gel insertion</td>
<td>79.62±7.67</td>
<td>77.72±9.21</td>
<td>0.321</td>
</tr>
<tr>
<td>1 min after insertion</td>
<td>79.62±6.91</td>
<td>78.15±8.36</td>
<td>0.401</td>
</tr>
<tr>
<td>3 mins after insertion</td>
<td>81.75±6.65</td>
<td>79.87±8.41</td>
<td>0.220</td>
</tr>
<tr>
<td>5 mins after insertion</td>
<td>84.81±5.43</td>
<td>82.11±8.07</td>
<td>0.210</td>
</tr>
<tr>
<td>Mean Systolic Blood pressure (mm of Hg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>120.8±9.52</td>
<td>124.13±7.93</td>
<td>0.093</td>
</tr>
<tr>
<td>During I-gel insertion</td>
<td>118.01±7.05</td>
<td>118.40±9.41</td>
<td>0.614</td>
</tr>
<tr>
<td>1 min after insertion</td>
<td>116.93±7.04</td>
<td>122.00±8.71</td>
<td>0.44</td>
</tr>
<tr>
<td>3 mins after insertion</td>
<td>118.93±8.84</td>
<td>118.00±8.23</td>
<td>0.622</td>
</tr>
<tr>
<td>5 mins after insertion</td>
<td>121.30±10.10</td>
<td>120.50±7.68</td>
<td>0.691</td>
</tr>
<tr>
<td>Mean Diastolic Pressure (mm of Hg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>75.90±7.15</td>
<td>79.86±7.61</td>
<td>0.111</td>
</tr>
<tr>
<td>During I-gel insertion</td>
<td>74.80±4.60</td>
<td>71.73±5.20</td>
<td>0.611</td>
</tr>
<tr>
<td>1 min after insertion</td>
<td>75.70±5.50</td>
<td>74.93±7.01</td>
<td>0.54</td>
</tr>
<tr>
<td>3 mins after insertion</td>
<td>76.80±5.84</td>
<td>77.53±6.33</td>
<td>0.59</td>
</tr>
<tr>
<td>5 mins after insertion</td>
<td>79.60±6.51</td>
<td>76.53±5.37</td>
<td>0.271</td>
</tr>
<tr>
<td>Mean Arterial Pressure (MAP) (mm of Hg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>93.41±6.76</td>
<td>93.61±6.99</td>
<td>0.900</td>
</tr>
<tr>
<td>During I-gel insertion</td>
<td>88.23±5.31</td>
<td>88.25±5.75</td>
<td>0.981</td>
</tr>
<tr>
<td>1 min after insertion</td>
<td>90.64±6.82</td>
<td>90.12±6.05</td>
<td>0.719</td>
</tr>
<tr>
<td>3 mins after insertion</td>
<td>91.87±5.74</td>
<td>91.32±5.10</td>
<td>0.670</td>
</tr>
<tr>
<td>5 mins after insertion</td>
<td>92.30±5.41</td>
<td>92.32±5.64</td>
<td>0.840</td>
</tr>
<tr>
<td>Mean Respiratory rate (breathes per minute)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>16.05±1.21</td>
<td>16.42±1.67</td>
<td>0.064</td>
</tr>
<tr>
<td>During I-gel insertion</td>
<td>15.80±0.96</td>
<td>16.40±1.65</td>
<td>0.062</td>
</tr>
<tr>
<td>1 min after insertion</td>
<td>15.72±0.98</td>
<td>15.60±0.95</td>
<td>0.840</td>
</tr>
<tr>
<td>3 mins after insertion</td>
<td>15.95±1.13</td>
<td>15.55±0.87</td>
<td>0.106</td>
</tr>
<tr>
<td>5 mins after insertion</td>
<td>15.80±0.96</td>
<td>15.57±0.98</td>
<td>0.291</td>
</tr>
<tr>
<td>Mean SpO2 (%)</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Graph 2. Mean attempt time taken by both the groups
As per the above graph comparing the time taken in residents and faculty group from picking up of the device to successful ventilation on first attempt is 4.55 seconds and 4.29 seconds respectively. Thus, the time frame for successful l-gel insertion and positioning for effective ventilation is comparable in both groups without significant difference.

There were no reports of post l-gel extubation oral mucosal trauma, post operative sore throat or cough or laryngospasm, from either group in our study.

4. DISCUSSION

L-gel™ (Intersurgical Ltd, Wokingham, U.K.) is a new second generation, single use supraglottic airway device (SAD) with a non-inflatable cuff and a drain tube. (19) The non-inflatable cuff is made of gel-like thermoeelastic elastomer, that creates a non-inflatable anatomical seal of the pharyngeal, laryngeal and peri-laryngeal structures. Thus, making l-gel easy to insert and position, useful for anesthesia, cardiopulmonary resuscitation and even acts as a rescue device in cases of failed intubation and ventilation.

During our study, all first attempt insertion by the faculty group were successful. In the residents’ group, following a tutorial and demonstration of l-gel insertion, in thirty-two cases out of forty, there was successful first attempt l-gel insertion. Followed by seven successful second attempt insertion and only one successful third attempt insertion. This enlightens the ease of l-gel insertion and requirement of virtually no learnt skill or dexterity for successful insertion and positioning for achieving airway patency. In a study carried out by Stroumpoulis K et al, comparing l-gel and classical LMA insertion by experienced and novice physicians in manikins, l-gel performed better than cLMA especially when used by novice physicians [10].

The average time taken in both faculty and residents’ group, from picking up the device to commencement of manual ventilation after first successful insertion was comparably similar, 4.29 seconds and 4.55 seconds respectively, which was not statistically significant. With no events of failed insertion and positioning even after third attempt in either group. Thereby making it safe to say that the use of such an easy to learn device, with virtually no requirement of any advanced skill or training, definitely compares favorably against the skill and experience required to secure airway with tracheal intubation by novice practitioners and paramedical staff in both pre-hospital or in-hospital emergency settings [11-13].

Also, the hemodynamic parameters showed little to no changes during l-gel insertion or following one, three- and five-minutes post l-gel insertion in both study groups. This finding is in similar as seen in a study by Jindal P et al, who compared hemodynamic effects of three supraglottic airway devices (SAD) l-gel, LMA and streamlined pharyngeal airway (SLIPA) during general anesthesia with controlled ventilation, with l-gel resulting in least hemodynamic changes during device use [14].

However, this being a single centre study, carried out in a controlled environment with adequate facilities, experienced practitioners and fasted patients, which makes deriving conclusive evidence regarding effective use of l-gel supraglottic airway device by inexperienced practitioners in emergency situations difficult [15,16]. Thereby necessitating more studies focusing on its effective use in emergency situation, involving patients at a risk of aspiration or with anticipated difficult airway etc., especially by novice practitioners to help establish a patent airway.

5. CONCLUSIONS

l-gel supraglottic airway device is an exceptionally useful tool for both basic as well as advanced airway management. A well-defined preformed shape, no cuff and minimal to virtually no learning curve makes it a good device to secure airway and ensure adequate ventilation and perfusion for the experienced physicians as well as the new recruits.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.
CONSENT
As per international standard or university standard, patients’ written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL
Institute Ethics Committee Clearance was obtained before the start of the study.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES

© 2022 Shah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/83264