A Comparative Analysis on the Anti-Cholesterol Activities of *Allium cepa* and *Allium sativum*

M. Preethi Raj a, S. Kavitha a#, V. Vishnupriya a*, R. Gayathri a# and J. Selvaraj a#

a Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i61A35457

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/82150

Received 20 October 2021
Accepted 27 December 2021
Published 28 December 2021

ABSTRACT

Background: Genus *Allium* produces compounds of sulfur which is an important component for medical use. Studies have The *Allium* species and their extracts have the effect on cardiovascular disease risk factor. Both *Allium cepa* and *Allium sativum* are used as one of the spices in food preparation. *Allium sativum* or garlic is employed in the treatment of many diseases like blood pressure, atherosclerosis, high cholesterol, heart attack and coronary heart disease. Many biological properties like antioxidant, antimicrobial and antidiabetic are attributed to the abundance of *Allium cepa*.

Aim: The study aimed to compare the *in vitro* anti-cholesterol activities of *Allium sativum* and *Allium cepa*.

Methods: The phytochemical analysis, in vitro antioxidant activity and anti-cholesterol activity of both the extracts *Allium cepa* and *Allium sativum* were analysed using standard protocols. The data were subjected to statistical analysis using one – way analysis of variance (ANOVA) and Duncan’s multiple range test to assess the significance of individual variations between the groups. In Duncan’s test, significance was considered at the level of p<0.05.
Results: Phytochemical screening showed that both the plant extracts are rich in phytochemicals like phlobatannin, carbohydrate, flavonoids, alkaloids, terpenoids, proteins and steroids and detection of saponin was done. DPPH radical scavenging activity showed the potent antioxidant activity of both the plant extracts. A comparative analysis on the anti-cholesterol activities of Allium cepa and Allium sativum revealed that Allium cepa showed more anti-cholesterol activity compared to Allium sativum.

Conclusion: The study revealed the potent antioxidant and anticholesterol activity of Allium cepa compared to Allium sativum.

Keywords: Allium cepa, Allium sativum, hyperlipidemia, Anti-cholesterol activity, Antioxidant activity, innovative technology, novel method.

1. INTRODUCTION

Hyperlipidemia is a condition where excess fatty substances, lipids are present in the blood. Abnormal level of lipids in blood (hyperlipidemia) is a symptom of different disorders of lipoprotein metabolism. Extra amount of lipid circulating in blood is attached to the protein and is known as hyperlipoproteinemia [1]. Hypercholesterolemia is a genetic disorder of metabolism of lipoprotein characterized by high plasma concentrations of deposition of cholesterol in extravascular tissues and increased risk of heart disease [2]. One of the leading causes of deadly disease in the world is hyperlipidemia. Increased levels of lipids circulating in blood develops cardiovascular and metabolic syndrome diseases [3]. Chemically active atoms which use oxygen to generate energy in the form of ATP are known as free radicals. Antioxidants are helpful in preventing harmful effects of free radicals [4].

Free radicals contribute to many disorders in humans like arthritis, central nervous system injury, and cancer. Recent research confirms that antioxidants are the most effective tools to eliminate free radicals which cause oxidative stress and are possible protective agents that protect the cells from reactive oxygen species and retard the progress of many diseases as well as lipid peroxidation [10]. This research is needed to find a cost-effective and safe drug for anti-cholesterol activity. Since a comparative anti-cholesterol activity is not studied in Allium cepa and Allium sativum, this study will fulfill this deficiency. Our team has extensive knowledge and research experience that has translate into high quality publications [11-30]. The aim of this study is to have a comparative analysis on the anti-cholesterol activities of Allium cepa and Allium sativum.

2. MATERIALS AND METHODS

2.1 Phytochemical Screening Test

2.1.1 Test for phlobatannin

1ml of the extract was treated with 1ml of 1% HCl and boiled for 10 mins. The formation of red color precipitate indicates the presence of phlobatannin.

2.1.2 Test for Carbohydrates

Three to five drops of Molisch reagent was added with 1 mL of the extract and then 1 mL of concentrated sulphuric acid was added carefully through the side of the test tube. The mixture
was then allowed to stand for two minutes and diluted with 5 mL of distilled water. The development of red or dull violet rings at the junction of the liquids showed the presence of carbohydrates.

2.1.3 Test for Flavonoid

Few drops of 1% liquid ammonia were taken in a test tube and along with it 1 ml of the extract was added resulting in the formation of yellow color thereby indicating the presence of flavonoids.

2.1.4 Test for Alkaloids

2 ml of the sample was mixed with 2 ml of HCl. Then 6 drops of HCN were added and further 2 drops of picric acid were added that resulted in a creamish pale yellow ppt indicating the presence of alkaloids.

2.1.5 Test for Terpenoids

2 ml of sample along with 2 ml of chloroform and 3 ml of conc. H2SO4 was added. The red color ppt obtained indicates the presence of terpenoids.

2.1.6 Test for proteins

One milliliter of ninhydrin was dissolved in 1 mL of acetone and then a small amount of extract was added with ninhydrin. The formation of purple colour revealed the presence of protein.

2.1.7 Detection of saponins

Foam test: A fraction of the extract was vigorously shaken with water and observed for persistent foam.

2.1.8 Test for steroids

One milliliter of chloroform was mixed with 1 mL of extract and then ten drops of acetic anhydride and five drops of concentrated sulphuric acid were added and mixed. The formation of dark red colour or dark pink colour indicates the presence of steroids.

2.2 DPPH Free Radical Scavenging Activity of Allium sativum and Allium cepa

Scavenging of 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radicals was assessed by the method of Hatano et al. (1989). DPPH solution (1.0 ml) was added to 1.0 ml of extract at different concentrations (0.1 to 0.5 mg/ml). The mixture was kept at room temperature for 50 minutes and the activity was measured at 517 nm. Ascorbic acid at the same concentrations was used as standard. The capability to scavenge the DPPH radical was calculated and expressed in percentage (%) using the following formula:

\[
\text{DPPH radical scavenging (\%)} = \frac{\text{Control OD} - \text{Sample OD}}{\text{Control OD}} \times 100
\]

2.3 In vitro Anti-cholesterol Activity of Allium sativum and Allium cepa

The anti-cholesterol assay was carried out as described as per the kit method (Spinreact, S.A.U-Ctra Santa Coloma, Girona, Spain). Cholesterol was dissolved in chloroform at a concentration of 2.5 mg mL/ml. Ten microliters of the extract were pipetted into a microtiter plate followed by the addition of 2000 μL of R1 reagent and 10 μL of cholesterol as sample. Twenty microliter of distilled water and 2000 μL of R1 reagent were used as blank. Negative control consisted of 20 μL cholesterol and 2 ml R1; standard consisted of 20 μL simvastatin and 2000 mL R1 reagent. The contents were incubated between 0-30 min at room temperature and the absorbance was read at 500 nm in a UV-Vis spectrophotometer against reagent blank. Anti-cholesterol assay of the extract was calculated using the following equation:

\[
\text{Inhibition (\%)} = \frac{\text{Negative control} - \text{Sample}}{\text{Negative control}} \times 100
\]

2.4 Statistical Analysis

The data were subjected to statistical analysis using one–way analysis of variance (ANOVA) and Duncan's multiple range test to assess the significance of individual variations between the groups. In Duncan's test, significance was considered at the level of p<0.05.

3. RESULTS

The antioxidant activity of the extract Allium cepa showed that there is an increase in the in vitro antioxidant activity as the concentration increases. The percentage of inhibition of Allium cepa is more compared to Allium sativum for the anti-cholesterol activity (Fig1). Both Allium cepa and Allium sativum have anti-cholesterol activities. But compared to both plant extracts,
Allium cepa has more anti-cholesterol activity compared to Allium sativum (Fig.2). Preliminary phytochemical screening analysis showed presence of phytochemicals like, protein, amino acid, carbohydrate, terpenoids, flavonoids, alkaloids steroids and saponins. Amino acids were high present in both the plant extracts studied (Table 1).

Table 1. Phytochemical screening of Allium cepa and Allium sativum

<table>
<thead>
<tr>
<th>PHYTOCHEMICAL</th>
<th>ALLIUM CEPA</th>
<th>ALLIUM SATIVUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Amino acid</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Steroids</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Saponin</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

The phytochemical screening of Allium cepa and Allium sativum is tabulated ('+' indicate presence and '-' indicate absence).

In vitro anti oxidant activity of Allium cepa and Allium sativum (DPPH radical scavenging activity)

![Graph depicting the association between concentration and scavenging activity](image)

Fig. 1. Bar graph depicts the association between the concentration and scavenging activity. X-axis represents the concentration of “Standard (Vitamin C)”, “Allium cepa”, and “Allium sativum”. Y-axis represents the percentage of inhibition. Green colour represents Standard (Vitamin C), Yellow colour denotes Allium sativum and Blue colour denotes Allium cepa. The percentage of inhibition of Allium cepa is more for DPPH radical scavenging activity. Significance p<0.05
Fig. 2. Bar graph depicts the association between the concentration and anticholesterol activity. X-axis represents the concentration of “Standard (Simvastatin)”, “Allium cepa” and “Allium sativum”. Y-axis represents the percentage of inhibition. Blue colour represents Standard (Simvastatin), Orange colour denotes Allium sativum and Grey colour denotes Allium cepa. The percentage of inhibition of Allium cepa is more for anti-cholesterol activity. Significance p<0.05

4. DISCUSSION

The results of the phytochemical screening indicates that Allium sativum is rich in amino acids, flavonoids, alkaloids and moderately rich in proteins, carbohydrates, terpenoids, steroids, and saponin. Phytochemical screening of Allium cepa revealed that it is rich in amino acid, carbohydrate, steroids and saponin and it is moderately rich in protein, terpenoids, flavonoids, and alkaloids. DPPH radical scavenging activity showed that both the plants possess in vitro antioxidant activity. The plant also possessed anti-cholesterol in vitro. In another study by [31], screening test of Allium cepa and Allium sativum resulted that water and ethanol extracted more components than other substances like acetone in this study. The plant is rich in phytochemicals which might be the underlined reason for the beneficial activities of the plant. The medicinal value of plant is related to their phytochemical component content and secondary metabolites, including: phenolic compounds, flavonoids, alkaloids, tannins, and other stress gene response products [32].

The in vitro antioxidant activity of the plant extracts was assayed by DPPH radicals scavenging activity by using vitamin C as standard. The results showed that the extracts possessed in vitro antioxidant activity in a concentration-dependent manner. Due to antioxidant activity, Allium cepa and Allium sativum have a role in decreasing risk factors of chronic diseases and by reducing the oxidative stress [33]. Due to the presence of organosulfur and flavonoid compounds these beneficial effects are present in these plant extracts [32]. Hence it was found that Allium cepa and Allium sativum possess potent antioxidant activity. The ethanolic extracts of Allium cepa and Allium sativum are found to have in vitro anti-cholesterol activity in a dose dependent manner although its activity is not as potent as the standard drug statin.

Allium sativum gained substantial interest by many researchers because of its impact on lipid levels. Allium sativum is discovered to have useful cardiovascular effects including reduction in cholesterol [34]. Hyperlipidemia is caused by the abundance of fatty substances or lipids in blood. This may be caused due to genetic factors or metabolic diseases like diabetes mellitus etc. Since the prolonged exposure of synthetic anti-cholesterol drug, statin is having severe side effects, the search for a new cost effective and
natural drug is an urgent need and our results showed in vitro anti-cholesterol activity. Hence these plants can be used for the treatment of hypercholesterolemia. Only preliminary in vitro studies are done on anti-cholesterol activities. To develop a therapeutic drug for hypercholesterolemia for these drugs, further in vitro and in vivo studies should be performed.

5. CONCLUSION

A comparative analysis on the anti-cholesterol activities of *Allium cepa* and *Allium sativum* was done. Both *Allium cepa* and *Allium sativum* have anti-cholesterol activities. But *Allium cepa* possessed more anti-cholesterol activity compared to *Allium sativum*.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

210

Available: http://dx.doi.org/10.1016/j.jds.2020.02.009

© 2021 Raj et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/82150