Comparative Evaluation of Alpha-Amylase and Alpha-Glucosidase Inhibitory Potential of Aqueous Seed Extract of *Trigonella Foenum-Graecum* and *Moringa Oleifera* - An In vitro Study

N. Prithiksha a, R. Gayathri a*, V. Vishnu Priya a, J. Selvaraj a and S. Kavitha a

a Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i3B35392

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/79883

ABSTRACT

Background: *Trigonella foenum-graecum* is one of the commonly used herbs in food. *Moringa oleifera* is a source of food, accommodation and conventional medicine for many peoples in the developing countries. The seeds of both the plants were explored for antidiabetic potential.

Methods: The current work was designed to probe the in vitro antidiabetic potential of the aqueous seed elicit of *trigonella foenum-graecum* and *Moringa oleifera* using the enzymes alpha amylase and alpha glucosidase. Both the extracts were screened for their phytochemicals and antioxidant potential was also analysed. The data were examine statistically by a one-way analysis of variance (ANOVA) followed by Duncan’s multiple range test was used to see the statistical significance in conjunction with groups. The results with the p<0.05 level were considered to be statistically significant.

Result: Due to its chemical ingredient and active compounds like amino acids, alkaloids, flavonoids, it proceeds as a good antioxidant. *Trigonella foenum-graecum* seed extract exhibited comparatively higher antidiabetic potential with an IC₅₀ of 300µg/ml than the *Moringa oleifera* extract. Results of the work designate that both extracts of the plant possessed by forbidding alpha amylase, alpha glucosidase show maximum inhibition. Hence concluded that, *Trigonella foenum-graecum*
Prithiksha et al.; JPRI, 34(3B): 46-54, 2022; Article no. JPRI.79883

graeum leaves might be considered as herbal remedies for diabetes.

Conclusion: *In vitro* antioxidant and antidiabetic potential of seed elicit of *Trigonella foenum-graecum* and *Moringa oleifera* were analyzed and compared. This study shows that *Trigonella foenum-graecum* has higher antidiabetic potential than the *Moringa oleifera* extract.

Keywords: Alpha amylase; alpha glucosidase; fenugreek; Moringa oleifera; innovative technology; novel method.

1. INTRODUCTION

Trigonella foenum-graecum is an herb extensively cultivated in India and some parts of China. In India, seeds are used as condiments [1]. It is an annual plant, which belongs to the family *leguminosae* 1 [2]. Seeds place a predominant role in the herbal therapeutics and are acknowledged for tonic, carminative and aphrodisiac potential [3]. *Trigonella foenum-graecum* is a self pollinating crop and it is a vernacular plant used to make maple syrup and the steroid saponin are used widely in industries. *Trigonella foenum-graecum* is rich in calcium, iron, beta carotene, vitamins, lipids [4] and the seeds are rich in carbohydrates and proteins. It is also used as a folk treatment for non insulin dependent diabetes [5]. *Trigonella foenum-graecum* is also used to control Hyperglycemia and hyperlipidemia [6]. It is also called fenugreek. It is used to control the glucose, cholesterol, triglyceride and acts as a lowering compounds. It exhibits a long time antidiabetic action [4].

In the current framework, phytochemicals have obtained much attention in the treatment of diabetes. For various reasons, many researchers have concentrated on isolation of hypoglycemic agents from the medicinal plant [7]. Plant polyphenols and the flavonoids are some of the commonly occurring antidiabetic agents [8]. *Trigonella foenum-graecum* contributes to lower postprandial hyperglycemia in diabetes the mechanisms of action involves provocation of glucose dependent insulin secretion from beta cells of pancreas along with embarrassment of activity of enzymes like amylase and glucosidase [9,10].

Moringa oleifera is a famous consumable plant having therapeutic and the nutritive values. *Moringa oleifera* is also known as Horseradish tree and also called as drumstick tree. It is rich in phytochemicals and minerals [9-11]. It is a constituent of folk medicine and helps to cure the diabetes. It is commonly called as Miracle tree. It also helps to control cancer [12-14]. This medicinal plant is used as a food additive to get relieved from malnutrition. It acts as an antioxidant, anti inflammatory, antidiabetic, antimicrobial agent and also takes measures as a natural coagulant. *Moringa oleifera* is also used in the treatment of anemia [15-17]. It has being widely accepted by major population as nutrition and therapeutic agents [18]. It can be suggested as a potential herbal source to treat diabetes mellitus and as being commonly accepted by major population. Our team has extensive knowledge and research experience that has interpret into high quality publications [19-34]. The aim of the study is to compare and assess the alpha amylase and alpha glucosidase inhibitory potential of aqueous seed extracts of *Trigonella foenum gracus* and *Moringa oleifera* through an *in vitro* study.

2. MATERIALS AND METHODS

2.1 Plant Extract

Trigonella foenum-graecum and *Moringa oleifera* seed were collected from a farm in Chennai. Washed, crushed and made into powder. Powder was utilized to prepare an 80% aqueous extract. The extract was prepared by a hot percolation method.

2.2 Phytochemical Screening Test

2.2.1 Test for phlobatannin

1ml of the extract was treated with 1ml of 1% HCl and boiled for 10 mins. The formation of red color precipitate indicates the presence of phlobatannin.

2.2.2 Test for Carbohydrates

Three to five drops of Molisch reagent was added with 1 mL of the extract and then 1 mL of concentrated sulphuric acid was added carefully through the side of the test tube. The mixture was then allowed to stand for two minutes and diluted with 5 mL of distilled water. The development of red or dull violet rings at the
junction of the liquids showed the presence of carbohydrates.

2.2.3 Test for Flavonoids

Few drops of 1% liquid ammonia were taken in a test tube and along with it 1ml of the extract was added resulting in the formation of yellow color thereby indicating the presence of flavonoids.

2.2.4 Test for Alkaloids

2ml of sample was mixed with 2ml of HCl. Then 6 drops of HCN was added and further 2 drops of picric acid was added that resulted in a creamish pale yellow ppt indicating the presence of alkaloids.

2.2.5 Test for Terpenoids

2 ml of sample along with 2ml of chloroform and 3ml of con. H₂SO₄ was added. Red color ppt obtained indicates the presence of terpenoids.

2.2.6 Test for proteins

One milliliter of ninhydrin was dissolved in 1 mL of acetone and then a small amount of extract was added with ninhydrin. The formation of purple colour revealed the presence of protein.

2.2.7 Detection of saponins

Foam test: A fraction of the extract was vigorously shaken with water and observed for persistent foam.

2.2.8 Test for steroids

One milliliter of chloroform was mixed with 1 mL of extract and then ten drops of acetic anhydride and five drops of concentrated sulphuric acid were added and mixed. The formation of dark red colour or dark pink color indicates the presence of steroids.

2.3 Antioxidant Activity

2.3.1 DPPH free radical scavenging activity

Scavenging of 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radicals was assessed by the method of [35]. DPPH solution (1.0 ml) was added to 1.0 ml of extract at different concentrations (0.1 to 0.5mg/ml). The mixture was kept at room temperature for 50 minutes and the activity was measured at 517 nm. Ascorbic acid at the same concentrations was used as standard. The capability to scavenge the DPPH radical was calculated and expressed in percentage (%) using following formula:

\[
\text{DPPH radical scavenged} \(\% \) = \frac{\text{Control OD} - \text{Sample OD}}{\text{Control OD}} \times 100
\]

2.3.2 Alpha amylase inhibitory activity of aqueous seed extract of Trigonella foenum-graecum and Moringa oleifera

Alpha amylase inhibitory activity of extract was carried out according to the standard method of Ademiluyi et al 2013, In a test tube a reaction mixture containing 500 mu/l phosphate buffer (100mM ; pH=6.8). 100 mu alpha amylase (2 mu/l) and varying concentration of extract (0.1 - 0.5 mg/ml) was incubated at 37degree Celsius for 20 minutes. Then the 200 mu/l of 1% soluble starch(100 MM phosphate buffer 6.8) was added as a substrate and incubated further at 37 degree Celsius for 30 minutes, 1000 mu/l of the 3,5 Dinitrosalicylic acid [DNS], DNS colour reagent was then added and boiled for 10 minutes. The absorbance of the resulting mixture was measured at 540 nm using a multi plate reader. Acarbose at various concentrations (0.1-0.5 mg/ml) was used as a standard.

\[
\text{Inhibitory activity } \% = \frac{(1 - \text{AS/AC}) \times 100}{1 - \text{AS/AC}}
\]

\[\text{AS}= \text{absorbance in the presence of test substance ; AC=absorbance of control.}\]

2.3.3 Alpha glucosidase inhibitory activity of aqueous seed extract of Trigonella foenum-graecum and Moringa oleifera

Alpha glucosidase inhibitory activity of extract was carried out according to the method of Ademiluyi et al (2013) Reaction mixture containing 500 mu/l phosphate buffer(100mM pH 6.8), 100mu/l glucosidase (10 ml) and varying concentration of extract (0.1 to 0.5 mg /ml) was pre incubated at 37 degree Celsius for 15 minutes. Then 200 mu/l p-NPG(5mM) was added as a substrate and incubated further at 37degree Celsius for 30 minutes. The reaction was stopped by adding 50 mu/l sodium carbonate (0.1M). The absorbance of the released p-nitrophenol was measured at 405 nm using multiple readers. Acarbose at various concentrations (0.1-0.5mg/ml)was used as a standard.

\[
\text{Inhibitory activity } \% = (1 - \text{AS/AC}) \times 100
\]
2.4 Statistical Analysis

The data were subjected to statistical analysis using two-way analysis of variance (ANOVA) and Tukey’s multiple range test to assess the significance of individual variations between the groups. In Tukey’s test, significance was considered at the level of $p<0.05$.

3. RESULTS

Trigonella foenum-graecum shows the presence of Amino Acids, Flavonoids, Alkaloids which have higher antidiabetic potential than Terpenoids and carbohydrates. In *Moringa oleifera*, the presence of flavonoids, steroids indicates the higher antidiabetic potential than Alkaloids and carbohydrates.

4. DISCUSSION

Phytochemicals are secondary metabolites only present in plants. Plants possess various biologically active compounds that protects and helps human body [36]. Phytochemical analysis has revealed (Table 1) a energetic presence of alkaloids, flavonoids and terpenoids in *trigonella foenum-graecum* and *Moringa oleifera* seed elicit [3]. The presence of phytochemicals like alkaloids, glycoside, tannins, carbohydrates, phenols indicates that the extract is potential for further in vitro analysis like antioxidant activity and antidiabetic activity.

Table 1. Phytochemical analysis of aqueous seed extract of *Fenugreek* and *Moringa oleifera*

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Fenugreek</th>
<th>Moringa oleifera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acids</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Graph 1. represents Antioxidant potential of aqueous seed extracts of *Trigonella foenum-graecum* and *Moringa oleifera* compared with standard Ascorbic acid. X axis represents the concentration in µg/ml and Y axis represents the inhibitory potential of the extracts. Blue bar represents standard Acarbose, orange bar represents *Trigonella foenum-graecum* and green bar represents *Moringa oleifera*. Each bar represents Mean ± SEM of 3 independent observations. Significance at $p < 0.05$.
Graph 2. Represents Alpha Amylase Inhibitory potential of aqueous seed extracts of Trigonella foenum-graecum and Moringa oleifera. X axis represents the concentration in µg/ml and Y axis represents the Alpha amylase inhibitory potential of the extracts. Green bar represents standard Acarbose, orange bar represents Trigonella foenum-graecum and purple bar represents Moringa oleifera. Each bar represents Mean ± SEM of 3 independent observations. Significance at p < 0.05.

Graph 3. Represents Alpha Glucosidase Inhibitory potential of aqueous seed extract of Trigonella foenum-graecum and Moringa oleifera. X axis represents the concentration in µg/ml and Y axis represents the alpha glucosidase inhibitory potential of the extracts. Green bar represents standard Acarbose, red bar represents Trigonella foenum-graecum and purple bar represents Moringa oleifera. Each bar represents Mean ± SEM of 3 independent observations. Significance at p < 0.05.
Antioxidant activity of aqueous seed extracts of *Trigonella foenum-graecum* and *Moringa oleifera* was determined by performing DPPH free radical scavenging assay. Free radicals are molecules influencing an unpaired electron [37]. Herbal elicits which are rich in phenolic compounds have great importance in free radical scavenging. The effect of antioxidants on DPPH free radical scavenging was considered to be due to their hydrogen donating ability. The extracts were analyzed for their antioxidant potential. Both the extract exhibited a significant antioxidant potential, when compared *Trigonella foenum-graecum* exhibited a strong antioxidant potential with IC₅₀ of 320 µg/ml then *Moringa oleifera* (IC₅₀ of 360 µg/ml) (Graph 1) as compared with the standard vitamin C.

In vitro Antidiabetic activity was analyzed for the extract and compared with the standard drug metformin. Both alpha amylase and alpha glucosidase inhibitory potential was estimated to analyze antidiabetic potential [38]. The ethanolic seed extract of *Trigonella foenum-graecum* exhibited significantly more inhibition for alpha amylase and alpha glucosidase (Graph 2 and 3) with IC₅₀ of 280 and 390 µg/ml respectively. Previous studies on antidiabetic potential of *Trigonella foenum-graecum* has also exhibited a significant inhibitory potential, where aqueous seed extract of *Trigonella foenum-graecum* a dose of 25mg/kg body weight given to experimental animals for 60days, significantly decreased blood glucose and liver enzymes level. However, no histological liver protective role was reported [3].

The extracts are tested for its role as a starch blocker [39]. Since, it prevents or slows the absorption of starch mainly by blocking the hydrolysis of glycosidic linkage in starch [40]. There is a positive relationship between phytoconstituents contents and its ability to inhibit alpha glucosidase and alpha amyrase. From the obtained results, it was evident that both the aqueous seed extract of *trigonella foenum and Moringa oleifera* possess antioxidant and antidiabetic potential and escalated in a dose dependent manner as compared to standard [41]. The extracts are capable of inhibiting the absorption of glucose [42]. Further research is needed to assess the in vivo antidiabetic potential of the extracts. Further validation of the drug’s ability to decrease glucose concentration in serum can help in the drug formulation.

5. CONCLUSION

Even though there are many drugs available for diabetes, a complete cure remains a dream. Current *In vitro* findings on the antioxidant and antidiabetic potential of seed elicits of *Trigonella foenum-graecum* and *Moringa oleifera* showed that both the plant extracts have potential antidiabetic activity due the existence of the bioactive compounds.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

SOURCE OF FUNDING

The present study was supported by the following agencies.

- Saveetha Dental College
- Saveetha Institute of Medical and Technical Sciences (SIMATS)
- Saveetha University
- Jyothi gas agency

ACKNOWLEDGEMENT

The authors would like to thank Saveetha Dental College and Hospitals, Saveetha Institute of medical and technical sciences, Saveetha University for providing research laboratory facilities to carry out the study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

2. Fenugreek: A review on its nutraceutical properties and utilization in various food
17. Babu S, Jayaraman S. An update on β-sitosterol: A potential herbal nutraceutical

41. Rub M. In vitro α-amylase and α-glucosidase inhibitory assay v1 (protocols.io.tdgei3w) [Internet]. protocols.io. Available: http://dx.doi.org/10.17504/protocols.io.tdgei3w