Phytochemical and Biological Activities of the Genus Terminalia, Emphasizing on Terminalia paniculata L.: A Review

Sai Manohar Valsa a*, K. Parimala aÆ, K. Revathi bê and G. Komali c

a Department of Pharmacology, Meenakshi Medical College Hospital & Research Institute, Meenakshi Academy of Higher Education and Research, Chennai - 600095, India.
b Meenakshi Academy of Higher Education and Research, Chennai - 600095, India.
c Department of Oral Medicine and Radiology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research, Hyderabad - 500060, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

Terminalia is the second major genus belonging of family Combretaceae. Species from this genus have been used in outmoded popular medicine globally. But then, a little study was stated on Terminalia paniculata L. (TP). This is a complete literature review of various Terminalia plants highlighting on TP, about its biological and isolated constituents. The objective of this study is to fascinate the attention of unfamiliar activities of TP, thus conducive to the growth of novel therapeutics which might benefit health of individuals suffering from illnesses. Extracts and their isolated constituents of various Terminalia plants reported a good spectrum of activities. TP consist of polyphenols such as ellagic acid, 3,3’-di-O-methyl ellagic acid and 3,4,3’-O-trimethyl flavellagic acid. Studies on Terminalia genus has opened a diverse active chemical component. Many biochemical potentials have authenticated use of Terminalia in therapy of different ailments in...
In the previous reviews on *Terminalia* by Cock I. E., 2015 and Fahmy NM et al., 2015 phytochemical and biological activities of the genus were elaborated. This review also focuses on the proven medicinal properties of *Terminalia paniculata* along with the activities on the other species of the genus *Terminalia*. This review encourages the researchers to work on the biological activities of *Terminalia paniculata* which has been lacking scientific evidences for all these years and thus directs future areas of research into the medicinal activities of this important species of the genus.

This review has 2 main sections, in first part, a phytochemical study of different components and their prevalence in *Terminalia* was reported, in the second part the biological activities led on various species was emphasized.

2. PART II: BIOLOGICAL ACTIVITIES

3.1 Hepatoprotective and Nephro-protective Studies

- *T. muelleri* constitutes polyphenolic-rich fraction having hepatoprotective and nephron-protective potential in CCl₄-generated hepatotoxicity and nephro-toxicities in rodents [11,12].
- Oral route of *T. arjuna* fruit juice prevented liver toxicity and oxidation of cadmium-caused liver toxicity in rodents [12,13].
- Manna reported protective actions of arjunolic acid, separated from bark of *T. arjuna*, against sodium arsenate-generated oxidation in mice hepatic cells [14,15].

Keywords: TP; ellagic acid; hepatoprotective; nephron-protective.
In vitro studies of hepatic cell lines with chebulic acid and neo chebulic acid, extracted from T. chebula fruit ethanolic-extract, potentially reduced tert-butyl hydroperoxide-caused cytotoxicity, suppressed active oxygen radicals, and increased the liver GSH [16,17].

Corilagin, from T. catappa acted against galactosamine and lipopolysaccharide-induced hepato-toxicity in rodents at 1 mg/kg by suppressing oxidation and cell death [18,19].

Prior treatment of T. bellerica leaves extracts in CCl$_4$-generated hepato-toxicity and nephron-toxicity, reported dose-dependent biochemical activity, while isolated gallic acid had strong hepatoprotective effects at 200 mg/kg [20,21].

3.2 Anti-inflammatory Studies

- Ethanolic stem extract of T. phanerophlebia and the isolated β-sitosterol from ethanolic stem extract prevented cyclooxygenase COX-II selectively [22,23].
- T. Ferdinandiana fruit extract reported a potent anti-inflammatory action in lipopolysaccharide-induced murine macrophages, by preventing COX-II and iNOS, also by preventing the synthesis of prostaglandin E$_2$ [24,25].
- Chebulagic acid isolated from seeds of T. chebula, potentially delayed the inception and development of collagen-induced arthritis in rodents [26,27].
- Anolignan B from the ethyl acetate extract of T. sericea root had a non-selective preventative action on both the COX isoenzymes [28-33,34].
- Punicalagin at 10 mg/kg and punicalin at 5 mg/kg from T. catappa leaves reported anti-inflammation against carrageenan-induced paw edema in rodents [23,35,36].
- Ursolic acid and 2eo,3eo, 2eo-trihydroxyurs-12-en-28- oic acid from T. catappa ethanol extract of leaves reported anti-inflammatory potential, with a strong reduction (more than 50%) of edema on the mice ear pinna at 0.30 mg/ear [37,12,36].

3.3 Gastroprotective Studies

- Chebulinic acid from fruit extract of T. chebula reported a gastroprotective action against duodenal ulcers caused by cold restraining (protection by 62.9%), aspirin-induced (protection by 55.3%), alcohol-induced (protection by 80.6%) and pyloric ligation-induced (protection by 66.6%) models. Chebulinic acid strongly decreases free acid levels by 49%, total acid levels by 38% and enhanced mucus production by 60%. Also, Chebulinic acid potentially suppressed H+ K+-Pump invito with an IC$_{50}$ of 65 μg/ml whereas, Omeprazole reported an IC$_{50}$ of 30.24 μg/ml, showing its potent antisecretory power [40,41].
- Methanolic T. arjuna extract resulted in a potent decrease in lesion-index in diclofenac-induced ulceration, and a strong raise in pH, non-protein sulphydryl, decreased glutathione, protein-bound carbohydrate complexes, mucus content with a good decrease in volume of gastric acid, free and total acid levels, pepsin levels, acid secretion, activity of lipid peroxidases and activity of myeloperoxidases [21,42].
- Ethanolic T. palida extract reported a potent anti-ulcer action against indomethacin, histamine and ethanol induced ulceration in rodents by increasing the antioxidant levels in mucosa, thus enhancing mucosal protection [23-45].

3.4 Antimicrobial and Antiviral Studies

- Terminalia plant species were observed to possess a significant anti-microbial action on wide range of microbes. Water extract of T. chebula reported a strong antibacterial action on H. pylori with a MIC of 125 μg/ml and MBC of 150 μg/ml [46].
- Acetone T. chebula extract reported a significant antibacterial action on Enterococcus faecalis, Bacillus sabtilis and Klebsiella pneumoniae [47].
- Casuarinin from T. arjuna bark extract, reported a strong antiviral action on Herpes simplex type II at 25 μM and prevented viral titers up to 11akh-folds by preventing the attachment and penetration of virus [48].
- Fyhrquist reported that methanolic extracts of roots and bark of T. sambsiaca possessed lesser MIC values than aqueous, butanolic and chloroform extracts against mycobacterium [49].
The significant antibacterial action of ethyl acetate leaves extract of *T. muelleri* was credited to gallic acid [50].

Antifungal action of 6 *Terminalia* leaf extracts (*T. proteinoids, T. brachystemma, T. sericea, T. gazensis, T. mollis* and *T. sambesiaca*) were evaluated on various fungi. It was reported that extract of acetone had highest antifungal action. Extract of *T. sericea* was most active against wide spectrum of microorganisms [51].

Anolignan B from ethyl acetate extracts of *T. sericea* roots had a potent action against microbes with MIC 3.80 µg/ml with *Bacillus subtilis* and 31 µg/ml with *Escherichia coli* [40].

Gallic acid from *T. nigrovenulosa* bark extracts reported a significant antifungal action against *Fusarium solani* [52].

T. macropera ethanolic extract of roots had promising action against microbes, with the lowest MIC against *Shigella dysenteriae, Staphylococcus aureus* and *Vibrio cholera* with a strong action against *Campylobacter* [53]. Additionally, *T. macropera* root ethanolic extract reported an antimicrobial action against *Neisseria gonorrhoeae* with a MIC range of 100 µg/ml to 200 µg/ml, diethyl ether extract had most active MIC value ranging from 25 µg/ml to 50 µg/ml [54]. Also, it was presumed that punicalagin and terchebulin, were the constituent responsible for activity against *Helicobacter pylori* [55-58].

3.5 Cytotoxicity Studies

- Methanolic extract of *T. chebula* fruits reported a reduction in cell-viability, anti-cell proliferatory effects, and resulting in apoptosis as dose increased on cancer lines. Also, it resulted in cell death at reduced doses, and resulted in necrosis at increased doses. Chebulinic acid, tannic acid and ellagic acid, have IC₅₀ of 53 µg/ml, 59 µg/ml and 78 µg/ml respectively, posed the highest cytotoxicity amongst the fruits of *T. chebula* [59]. Moreover, chebulagic acid from the fruits of *T. chebula* extract reported an antiproliferative effect against HCT-15, COLO-205, MDA-MB-231, DU-145 and K562 cell-lines [60].
- Water extract of *T.catappa* leaves and its constituents *punicalagin* were active against bleomycin- caused genotoxicity in Chinese hamster ovary cells. In addition, *T.catappa* leaves extract resulted in a inhibitory effect on invasion and motility of metastatic A549 and Lewis lung carcinoma cells. The leaf ethanolic extract of *T. catappa* strongly prevented migration of squamous cell carcinoma cells.
- Luteolin, gallic acid and gallic acid ethyl ester from methanolic extract stems and leaf of *T. arjuna* had a significant anti-neoplastic potential.
- Ivorenoiside C from barks of *T. ivorensis* possessed an anti-proliferative action on MDA-MB-231 and HCT116 human cancer lines with IC₅₀ of 3.96 µM and 3.43 µM respectively.
- Leaves acetone extract of *T. calamansanai* prevented viability of HL-60 cells.

3.6 Cardioprotective Activities

* T. arjuna* bark had been in use as a folk medicine as cardiotonic. The ethanolic bark extract of *T. arjuna* increased cardiac intracellular antioxidant status in CCl₄ generated oxidation in rodents [57]. The antioxidant effect was similar to that of Vit C. Additionally, butanol fraction of *T. arjuna* bark extract possessed a protective effect on doxorubicin-generated cardiotoxicity by enhancing antioxidant enzymes, reducing serum creatine kinase levels and also by decreasing lipid peroxidation.

- Scientists reported that patients with refractory chronic congestive heart failure, on treatment with *T. arjuna* bark extract as an additive medicine, resulted in a long-term enhancement in the symptoms of cardiac failure with an enhancement in left ventricular ejection. A clinical trial was conducted to estimate role of *T. arjuna* in ischemic mitral regurgitation (IMR) after myocardial infarction (MI). Patients on treatment with *T. arjuna* as an adjuvant resulted strong prevention in IMR and decrease in frequency of angina.
- Pre-treatment with fruit extract of *T. pallida* upgraded myocardial damage in isoproterenol- induced MI in rodents and resulted in protective actions on cardiac muscle.
- Pre-treatment with *T. chebula* extract upgraded effects of isoproterenol on lipid peroxide formation [51,52].
3.7 Anti-hypertensive Study

- Bark extract of *T. superba* resulted a strong antihypertensive action in spontaneously hypertensive rats, and also in glucose-induced hypertensive rats due to the withdrawal of sympathetic tone and enhancing antioxidant level [53,54].

3.8 Antiparasitic and Molluscicidal Studies

- *Invitro* nematicidal action of *T. nigrovenulosa* bark on *Meloidogyne incognita* was due to 3,4-dihydroxybenzoic acid [55].
- Ethyl acetate, acetone and methanol leaves and seeds extract of *T. chebula* resulted *invitro* ovicidal and larvicidal action on *Haemonchus contortus* [56]. Additionally, *T. chebula* fruit molluscicidal action was attributed for tannic acid which strongly prevented AChE, ACP and ALP action in the nervous system of *Lymnaea acuminata* [57].
- Ethanolic leaves extract of *T. catappa* had a molluscicidal action on snail intermediate hosts of schistosomiasis (*Biomphalaria pfeifferi* and *Bulinus globosus*) with *B. pfeifferi* being highly vulnerable.

3.9 Wound Healing Activity

- Topical application of *T. chebula* alcoholic leaves extract on rodents’ wounds resulted a positive healing effect, by enhancing tensile strength of cells by around 41% and reducing epithelialization [59]. Additionally, tannin-rich fraction from *T. chebula* fruits were recognized for wound healing due to strong anti-bacterial and angiogenic activities [60].
- Topical administration of hydro-alcoholic extract of *T. arjuna* showed in a strong raise in tensile strength of wounds and epithelialization. This wound healing action was marked in tannin-rich portion compared to others.

3.10 Biological Activities Stated on *T. paniculata*

- Water extract of bark of *T. paniculata* decreased high blood glucose, HbA1c, creatinine, urea, ALT, AST levels and upturned the abnormal endogenic antioxidants and lipid levels to normal in Streptozocin-generated diabetic rats in contrast with untreated diabetic rats.
- Ethanolic extract of *T. paniculata* bark reported hepatoprotective action and decreased abnormal serum parameters and lipid peroxides in paracetamol-generated liver toxicity in rodents [30].
- Water extract of *T. paniculata* bark strongly decreased carrageenan-caused paw edema volume [37].

4. CONCLUSION

A wide-ranging literature on *Terminalia* genus has discovered a diversity of constituents formed by this genus. Tannins, flavonoids, phenolic acids, triterpenes, triterpenoid glycosides, lignan and lignan derivatives were found as the chief classes of secondary metabolites of this genus, responsible for the biological activities. Additionally, present report showed that many biological studies conducted on various extracts and isolated contents from various species of this genus were engrossed on the evaluation of antimicrobial, antioxidant, hepatoprotective, anti-inflammatory, hypoglycemic, hypolipidemic, cytotoxic and wound healing effect. The different biological studies authenticated folk medicinal use of various *Terminalia* species.

Though various phytoconstituents and biological findings were reported from *Terminalia*, the researches have attended on a few species, with *T. chebula*, *T. bellerica*, *T. arjuna*, *T. catappa*, *T. horrida*, *T. superba*, *T. macroptera*, *T. pallida*, *T. ivorensis*, *T. sericea* and *T. alata* being greatest phytochemically and biologically evaluated species, parting a lush area for further research on other species like *TP* that have not been fully explored yet.

Acute toxicity study was carried out on *TP* with a dose of 1000 mg/kg body weight. Under this, the considered parameters such as skin colour, hair loss, eating and sleeping patterns and other behavioural observations were not altered showing that *TP* is safe orally at a dose of 1000 mg/kg body weight. This review delivers a complete understanding of the phytochemicals and biological activities of various *TP* which might benefit in the development of new alternate medicines for the therapy of various illnesses.

CONSENT

It is not applicable.
ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

18. Nair JJ, Aremu AO, Van Staden J. Anti-inflammatory effects of Terminalia phanerophlebia (Combretaceae) and

38. Manna P, Sinha M, Pal P, Sil PC. Arjunolic acid, a triterpenoid saponin, ameliorates arsenic-induced cyto-toxicity in

