Role of Epidermal Growth Factor (EGFR) in Oral Cancer

Akhilesh G. Agrawal a†, Alka H. Hande b, Anand Bansod b*, Yash Goenka b and Arati Panchabhai c

a Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, India.
b Department of Oral Pathology and Microbiology, Sharad Pawar Dental College, Datta Meghe Institute of Medical Sciences, Wardha, India.
c Department of Oral Diagnosis, Medicine and Radiology, Sharad Pawar Dental College, Datta Meghe Institute of Medical Sciences, Wardha, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JPRI/2021/v33i61B35137

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/80219

ABSTRACT
Oral cancer is a pronounced disease and has the sixth-highest incidence among all the cancers occurring worldwide. Epidermal Growth Factor (EGFR) is of most prognostic significance among various markers found in oral squamous cell carcinoma. But no established criterion is universally used to evaluate EGFR expression. EGFR is known to perform a significant role in oral cancer development, and its overexpression dictates the poor clinical course of cancer. It is considered to be not only a valuable prognostic biomarker but also a promising therapeutic target in cancer treatment. Stimulation of EGFR enhances cancer processes, including increased cell division, neovascularization, invasion/metastasis, and escape from apoptosis. Increased EGFR levels are also observed in other cancers of the body. EGFR detection in OSCC can fulfill multiple roles in cancer diagnostics, such as early-stage, prognosis assessment, and treatment plan. The EGFR is a proto-oncogene activated at the cell membrane surface by transforming growth factor-α serves to advance cellular proliferation in cancer tissue. The literature demonstrates that EGFR is an important target for anti-cancer drugs in an advanced stage of head and neck cancers. Hence, understanding EGFR is essential to learning the development cascade of cancer.
Keywords: Oral cancer; carcinoma; EPFR; prognosis; biomarker.

1. INTRODUCTION

Oral cancer is a pronounced disease and has the sixth-highest incidence among all the cancers occurring worldwide [1]. It comes under the head and neck region cancers domain, and of all these, they comprise about 85% of that category [2]. The International Agency for Research on Cancer and World Health Organization reported that in India, 652,723 (accounts for 56.4% of all cancers in the country) many new cases of oral cancer were diagnosed in 2018 [3]. Despite development and advances in treating cancer, there is still no change in the survival rate of cancer patients; thus, a thorough knowledge of the alterations at the molecular level may aid in finding relevant novel predictive factors which can precisely predict the performance of the illness [4,5]. The invasion and metastasis cancer progression stage is related to unwanted clinical outcomes and constitutes an important, difficult barrier to a successful outcome. Epidermal growth factor (EGF) induced signaling is associated with tumor invasiveness and metastatic behaviour [6]. The receptors (EGFR, ErbB-1, or HER-1) of EGF play a crucial role in cell growth and differentiation in normal tissues and carcinogenesis and the development of the malignant disease [7]. Among various markers relevant in oral squamous cell carcinoma (OSCC), EGFR is most beneficial to predict and design the treatment protocol. But no established criterion is universally used to evaluate EGFR expression. EGFR is known to perform a significant role in oral cancer development, and it is overexpression is associated with the poor clinical course of cancer [8,9,10]. It is considered to be not only a useful prognostic biomarker but also a promising therapeutic target and is used in cancer treatment [11]. Stimulation of EGFR enhances cancer processes, including increased cell division, neovascularization, invasion/metastasis, and escape from apoptosis [12,13]. Increased EGFR levels are also observed in other body cancers [12,14]. EGFR detection in OSCC can fulfill multiple roles in cancer diagnostics, such as early-stage, prognosis assessment, and treatment plan [15]. The EGFR is a proto-oncogene activated at the cell membrane surface by transforming growth factor-a serves to advance cellular proliferation in cancer tissue [16]. The literature demonstrates that EGFR is an important target for anti-cancer drugs in an advanced stage of head and neck cancers [17]. Hence, understanding EGFR is important to learn the development cascade of cancer.

2. THE FAMILY OF EGF AND ITS RECEPTORS

Dr. Stanley Cohen first discovered EGF during his studies on Nerve Growth Factor in the 1960s [18]. It is a single-chain polypeptide containing 53 amino acids and cis, the group 1 EGF family [19,20,21]. It binds to its receptor known as EGFR. A glycoprotein EGFR (170-kDa) is omnipresent in various body tissues and is responsible for the survival and growth of cells and in stimulating multiple signaling cascades [22]. It is a tyrosine kinase receptor located at the cell membrane, which has been shown to involve in both standard and abnormal proliferation of epithelial tissues and by a gene located on chromosome 7p12 [23,24]. EGFR is a member of the ErbB family of Receptor Tyrosine kinase, which includes four structurally similar members: EGFR (ErbB1, HER1), ErbB2 (neu, HER2), ErbB3 (HER3), and ErbB4 (HER4) [25,26].

The receptor undergoes conformation after binding of specific polypeptide ligands, which undergoes homo- or hetero-dimerization with other EGFR molecules or with other HER family members, respectively, which results in activation of its intrinsic tyrosine kinase activity. This results in activation of signaling pathways within the cells and subsequently, phosphorylation of EGFR activates multiple biological processes, leads to apoptotic inhibition, stimulates the division of cells, and promotes neovascularization, as well as tigers the metastatic power of cancerous cells [27,28]. Activated EGFR stimulates several cascades pivotal for the survival and progression of.

3. EXPRESSION OF EGFR IN OSCC

The nature of EGFR overexpression differs from cancer to cancer and 80-90% of its overexpression is reported in OSCC [29]. In oral squamous cell carcinoma, overexpression of EGFR is associated with poor clinical outcomes, and it has been observed to be a critical analytical and predictive marker [17]. Though its amplification has also been observed, the nature of this overexpression may be due to an increase in the transcription of EGFR [30]. In a study on the gene amplification, microRNA (mRNA) expression, and protein overexpression of
EGFR, it was observed that there was a remarkable correlation between gene amplification and mRNA expression, whereas protein overexpression did not associate with mRNA expression, suggestive of the fact that EGFR expression is not regulated transcriptionally [31]. Other studies have proven that the expression of EGFR increases considerably with advancement from dysplastic lesions to OSCC [32,33]. It is also increased in the normal epithelial cells adjacent to oral cancer compared with normal tissue of healthy patients and is called “field cancerization” [30]. In normal tissues, the EGFR is limited to the basal layer while it wide spreads in all the layers of the epithelium in oral cancer tissue [34]. Some studies have observed that pEGFR expression was in association with the expression of E-cadherin protein [35]. Reduction in E-cadherin expression increases EGFR in keratinocytes [36], and E-cadherin expression is found to be decreased in oral cancer in another study [37]. EGFR is expressing oral cancer exhibits more aggression pathological characteristics, which may be attributable to the activation of different signaling pathways that control various biological processes in cancer progression [38].

4. EGFR SIGNALLING IN OSCC

EGF binds to its receptor, the EGF receptor (EGFR, ErbB1), activates tyrosine kinase and leads to downstream signalling pathways controlling cell proliferation, differentiation, survival, or motility [39,40]. EGF and its receptor are linked with cancer development and metastasis through 1) Enhancing cell division and migration through EGFR-Ras/Raf/MEK/ERK and EGFR-PI3K/AKT pathways. 2) Limiting the EGFR in the nucleus to promote cell propagation. 3) Downstreaming the autophagy activity. 4) Activation of several matrix metalloproteinases facilitating cancer invasion. 5) EGF-mediated reduction of mRNAs restraining oncogenic transcription factors [41]. The EGFR signal stabilizes b-catenin, decreases the membrane-bound b-catenin, enhances b-catenin nuclear accumulation by phosphorylated regulation, and induces mesenchymal cell morphology. Thus the dysregulation of b-catenin mediates via EGFR signalling leads to overexpression of oncogenes and promotes neoplastic growth [42]. Stimulation of EGFR promotes the migration of cancer via induction of EMT-like change and MMP-9 mediated degradation of E-cadherin [43]. The activation of the PI3K pathway in cancer has been demonstrated to develop resistance to treatment, which ultimately leads to cancer disease development [44,45]. EGFR upregulates the PI3K signaling that activates the IA PI3Ks [46]. The mutant form of EGFR activates and potentiates the PI3K signaling and plays its role in carcinogenesis [47]. RAS signaling is a crucial pathway in facilitating the biological reaction of the EGFR. ERK MAPK (mitogen-activated protein kinase) interaction leads to responses like growth, proliferation, differentiation, migration, and inhibition of apoptosis in cancer [48]. EGFR pathway induced PDK1 expression of fibronectin, MMPs, and Rac1/ cdc42. This shows that fibronectin and MMPs express one downstream signaling mechanisms that mediate lactate-induced metastasis [49]. EGF also induces rapid tyrosine dephosphorylation of focal adhesion kinase (FAK) which is associated with downregulation of its kinase activity [50]. Undoubtedly, the localization of the EGF and its receptor EGFR provides a better knowledge of its role in cancer and prognosis and treatment.

5. TARGETING EGF IN ORAL CANCER

Treatment of OSCC includes single-modality surgery, radiotherapy, or combinations of these modalities with or without chemotherapy and target agents [51]. As mentioned earlier, increased expression of EGFR and destructive actions of cancer cells, monoclonal antibodies concentrating in contrast to this receptor may observe to be an efficient agent [52]. Cetuximab is an anti-EGFR antibody demonstrated to encourage autophagy in many cancers in-vitro, including OSCC [53,54]. Erlotinib is another orally-active potent, selective inhibitor of the EGFR tyrosine kinase. In combination with cisplatin, Erlotinib has achieved a success rate of 21% phase I/II trial in patients reporting recurrent cases of oral cancer [55]. Inhibition of EGFR signalling plays a pivotal role in cancer development either by connecting to the extracellular domain or targeting the portion inside the cell that has TKA. Thus, EGFR should be considered useful diagnostic and prognostic and a promising therapeutic target [53]. Studies on different diagnostic techniques and immunochemical biomarkers [56-61] in oral cancer were reported.

6. CONCLUSION

This review focused on presenting a health-giving approach of EGF and EFG in oral cancer, its role, expression, signalling pathway,
and targeting it using chemotherapeutic agents. EGFR overexpression has been well reported in oral cancer, but its mechanism and significance in the biology of oral malignancies are still not thoroughly defined. Increased expression of EGFR in OSCC may suggest its positive role in the proliferation and differentiation of tumour cells and prognostic significance regarding disease-free survival. Detection of EGFR as a biomarker is key to identifying any oral malignant transformation.

CONSENT
It is not applicable.

ETHICAL APPROVAL
It is not applicable.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES


© 2021 Agrawal et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/80219