Comparative Study of Lung Function Test among Ballooning and Pursuing Lip Exercise

Priyanka a, R. Gayatri Devi b† and A. Jothi Priya b†

a Saveetha Dental College, Saveetha Institute of Medical and Technical Science (SIMATS) Saveetha University, Chennai, India.
b Department of Physiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Author RGD performed the data verification, manuscript drafting. Author Priyanka managed the Literature search, data collection, analysis and wrote first draft of the manuscript. All authors read and approved the final manuscript.

ABSTRACT

Introduction: Lung function tests have been routinely taken for diseased people such as COPD, asthma patients. Exercise and food habits play a vital role in improvement in lung function among these people. Hence, the current study is to assess the lung function parameters among the population performing lip and ballooning exercises.

Materials and Methods: The present study was carried out among the participants with the age of 18-25 years from saveetha dental college. 45 healthy volunteers were divided into three groups. Each group consists of 15 individuals. Group 1: Control; Group 2: Ballooning exercise subjects; Group 3: Pursuing lip exercise individuals. RMS Helios spirometer was used to measure lung volumes and capacities like FVC, FEV1, PEFR, PEF 25-75, FEV3. Statistical analysis was done using SPSS software, student't' test. P value of less than or equal to 0.05 was considered to be as statistically significant.

Results: FEV1/FVC is statistically significant among lip exercises (88.61±12.03) but insignificant among ballooning exercises than control individuals (97.61±6.32). FEF25-75 is statistically more significant among pursing lip exercise (2.65±1.74) than ballooning and control individuals. FVC is statistically more significant among ballooning (1.99±0.27) than pursuing lip exercise and control individuals.

DOI: 10.9734/JPRI/2021/v33i60B35051

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/80610

Received 20 October 2021
Accepted 27 December 2021
Published 28 December 2021
Conclusion: It is evident that the subjects performing ballooning exercise have significant increase in lung capacity in comparison with the subjects pursuing lip exercise. Regular exercise produces a positive effect on the lung by increasing the pulmonary capacities. The present study revealed that regular breathing exercise has an important role in determining and improving lung volumes and capacities.

Keywords: Pulmonary function test; lung volume; exercise; COPD; spirometer; Innovative technology.

1. INTRODUCTION

Spirometry assesses the integrated mechanical function of the lung, chest wall, respiratory muscles, and airways by measuring the total volume of air exhaled from a full lung (total lung capacity [TLC]) to maximal expiration (residual volume [RV]). The forced vital capacity (FVC) and the forced expiratory volume in the first second of the forceful exhalation (FEV1), should be repeatable to within 0.15 L. Reduction in FEV1 may reflect reduction in the maximum inflation of the lungs (TLC); obstruction of the airways; respiratory muscle weakness; or submaximal expiratory force due to poor coaching, poor understanding, or malingering. Airway obstruction is the most common cause of reduction in FEV1 [1]. Vital capacity is determined by the lung dimensions, compliance and respiratory muscle power whereas PEFR is determined mainly by airway caliber, alveolar elastic recoil and respiratory muscle effort. The significance of FEF25-75% is used for measuring the identified points at which 25% and 75% of the forced vital capacity has been exhaled and the calculated change in volume divided by the change in time. Using forced vital capacity as a primary reference means that the measured FEF25-75% is highly dependent on forced vital capacity volume [2]. Cv for FEF25-75% for 5-6yrs is 20% and its normal range is 40% to 160% [3]. Mid expiratory flow rate of 25-75% is the average forced expiratory flow rate in the middle 50% of the forced vital capacity. It helps in diagnosis of obstructive ventilators pattern and is dependent on forced vital cocotte in turn FEF25-75 which is highly variable. The significance of PEFR is a quick test to measure air flowing out the lungs and is mostly done for the people who have asthma [4].

Expiration is due to elastic forces of the lung just like balloons deflate faster at the start, so do lungs since flow depends on the elastic tension of the lungs. It measures the airflow through bronchi and also the degree of obstruction in the airways useful for asthma patients for the detection of narrow airways even before the symptoms appear. PEFR is mostly affected by height and weight. There is a good correlation between PEFR and FEV1 [5] it's normal range is 80% to 100%. FEV1/FVC is 94% approx. It is used for early detection of airway obstruction and indicator of mild lung injury [6,7].

Physical activity decreases the risk of premature mortality and chronic diseases like cardiovascular diseases and diabetes mellitus [8]. Advantages of performing exercises also involve people with chronic lung diseases COPD [5]. Earlier researchers stated that regular exercising people have lower risk of hospital enters and all cause mortality in COPD patients [9]. In recent studies, physical activity has shown association with slower age-related reductions of the forced expiratory volume in 1s in adults [10]. Decrease in FEV1 means lung disease is getting worse [11]. Furthermore, studies among sedentary and subjects performing exercises there is a significant increase in parameters and improved lung diffusion capacity among exercise performing subjects [12]. It is known that pulmonary functions vary to the physical characteristics like age, height, weight, altitude. However, very less non-diseased population were involved in physical activities in elderly age [13]. According to studies during exercising, the heart and the lungs come into action. When exercising, muscles work hard, the body requires more oxygen and more carbon dioxide is produced. When the lung is healthy, large breathing reserve volume is maintained [14,15].

The period of exercise to bring improvement in PFT varied from 1 month to 8 months reported by various researchers in India [16,17]. The possible explanation is that regular forceful inspiration and expiration during exercise leads to strengthening of the respiratory muscles which in turn help the lungs to inflate and deflate maximally. This maximum inflation and deflation is an important physiological stimulus for the release of surfactant as stated by [16]. The present study finding can also be explained on the basis of better functions of respiratory muscle strength, improved thoracic mobility and the
balance between lung and chest elasticity which the athletes may have gained from regular exercise. Hence regular physical activity causes many desirable physiological, psychological and physical changes in the individual [6,18].

Our team has extensive knowledge and research experience that has translate into high quality publications [19–37].

The main aim of the study is to measure the lung parameters between ballooning exercisers and pursuing lip exercisers.

2. MATERIALS AND METHODS

The present study was carried out among the participants with the age of 18-25 years from saveetha dental college. 45 healthy volunteers were divided into three groups. Each group consists of 15 individuals. Group 1: Control; Group 2: Ballooning exercise subjects; Group 3: Pursuing lip exercise individuals. RMS Helios spirometer was used to measure lung volumes and capacities like FVC, FEV1, PEFR, PEF 25-75, FEV3. Statistical analysis was done using SPSS software, student ‘t’ test. P value of less than or equal to 0.05 was considered to be as statistically significant. Ballooning exercise involves breathing in and out of air while the balloon deflates and inflates whereas pursuing lip exercise is breathe in through the nose for 2 seconds, purse the lips (pout shape) breathe out very slowly through pursed lips for 4 to 6 seconds and repeat.

3. RESULTS AND DISCUSSION

The purpose of this study is to compare the vital capacity of the subjects performing ballooning and lip exercises through lung function tests. From the Figs. 1 & 2, it was evident that the subjects performing ballooning exercise have significant increase in lung capacity in comparison with the subjects pursuing lip exercise.

After the performance, there was a significant increase in the lung capacity of the subjects performing ballooning exercises than pursuing lip exercises. Researchers stated that physical activity increases the performance of the lung as it is the vital organ responsible for the distribution of the oxygen and excretion of carbon dioxide. People who follow high intensity training have a risk of developing exercise induced asthma or a condition known as bronchial hyper responsiveness in which the airways are blocked after exercise [4,38].

In this study it is evident that performing regular exercises has a vital role in increasing the lung capacities and volume. There are significant changes in all the parameters when it is compared to the control group but the difference between each parameter is less as the time considered for the exercises is very less FEV3/FVC shows significance whereas rest other parameters show only differences (Table 1).

Ballooning exercising population has shown improvement in several ventilation related outcomes when compared to pursuing lip exercises population [39]. But were not shown possible improvement in COPD patients compared to non-exercising group [3].

The FEV1/FVC ratio when coupled with other parameters could be used as a predictor of obstructive and restrictive patterns of lung disorders [40,41]. In the present study, the mean of the percentage of predicted value of FEV1/FVC for Sedentary subjects was more or less the same whereas ballooning has less value compared to pursuing lip exercise. Some previous studies [42] have observed no significant differences in vital capacity in athletes when compared with non-athletes. The conflicting findings may be due to genetic and ethnic factors.

Population performing ballooning exercises showed significant increase in FVC, VC, PEFR, FEV1, FEF25-75, FEV3 when compared to the pursuing lip exercises population [43,44]. While the ballooning group’s thoracic muscles interact for the activity and also basic respiratory muscles such as diaphragm, intercostal muscle and external intercostal muscles and accessory muscles involved in the lifting of rib cage action thereby increasing the vital capacity and lung function on performing regularly [45].

The reference articles were collected electronically and only articles published in english were referred for manuscript writing. The research took place for 10 days where each individual performed their respective exercise thrice a day. And very little population count of 15 was only considered for the exercise aspect as the outcome will have visible differences in a short time period. This experiment can be conducted on various racial populations and also as a comparison on swimmers and sprinters as each environment and exercise requires different amounts of breathing capacity.
Table 1. Mean, standard deviation of ballooning and pursuing lip exercise, its significance

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>BALLOONING</th>
<th>PURSING LIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE</td>
<td>POST</td>
</tr>
<tr>
<td>FVC</td>
<td>1.50±0.47</td>
<td>1.99±0.27</td>
</tr>
<tr>
<td>FEV₁</td>
<td>1.82±0.83</td>
<td>1.93±0.23</td>
</tr>
<tr>
<td>FEV₁/FVC</td>
<td>97.76±5.01</td>
<td>97.13±6.32</td>
</tr>
<tr>
<td>PEFR</td>
<td>4.40±0.98</td>
<td>3.92±0.44</td>
</tr>
<tr>
<td>FEF 25-75</td>
<td>3.26±1.10</td>
<td>3.04±0.69</td>
</tr>
<tr>
<td>FEV₃</td>
<td>1.73±0.60</td>
<td>1.99±0.27</td>
</tr>
</tbody>
</table>

Fig. 1. This bar graph represents Post parameters of lung volumes and capacities, where the X axis represents FVC, FEV₁, FEF₂₅-₇₅, PEFR and FEV₃ and the Y axis represents mean value of individuals. Blue colour denotes control test individuals, red colour indicates ballooning test individuals and yellow colour indicates lip exercise test individuals. * represent statistically significant.

Fig. 2. This bar graph represents Pre and Post FEV₁/FVC of lung volumes and capacities, where X axis denotes FEV₁/FVC and Y axis denotes count in number, red colour indicates ballooning test individuals and yellow colour indicates lip exercise test individuals. * represent statistically significant.
4. CONCLUSION

There is a slight increase in lung capacity in both the subjects but only ballooning subjects show significance in FEV1/FVC. Regular exercise produces a positive effect on the lung by increasing the pulmonary capacities. The present study revealed that regular breathing exercise has an important role in determining and improving lung volumes and capacities.

SOURCE OF FUNDING

The present project was funded by:

- Saveetha Institute of Medical and Technical Sciences
- Saveetha Dental College and Hospital
- Saveetha University
- Indusind bank PVT ltd, chennai.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

CONSENT

As per international standard or university standard, patients’ written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).

ACKNOWLEDGEMENT

The author would like to thank all the participants for their valuable support and Saveetha Dental College for their support to conduct the study.

REFERENCES


42. American Physiological Society (1887-). Exercise: Regulation and integration of multiple systems. Amer Physiological Society. 1996;1210.

43. Frownfelter DL, Dean E, Dean EW. Cardiovascular and pulmonary physical therapy: Evidence and Practice. Mosby. 2006;848.