Early Mobilization is the Key towards Early Functional Independence in a Patient Undergone Aortic Valve Replacement: A Case Study

Gunjan Ingale a, Vaishnavi Dilip Yadav a*, Moli Jai Jain a and Vishnu Vardhan a

a Department of Cardio Respiratory Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi (M), Wardha, Maharashtra, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i60B34772

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/78108

Received 15 October 2021
Accepted 16 December 2021
Published 23 December 2021

ABSTRACT

Heart disease due to valvular anomaly has increased prevalence along with increasing age. Rheumatic heart disease is a condition in which the heart valves have been permanently damaged post rheumatic fever. We report a patient with Aortic valve replacement using TTK CH 25 prosthetic valve who underwent post-operative physiotherapy which comprises 2 weeks of phase I cardiac rehabilitation, a home exercise program after discharge, and follow-up after 2 weeks. During follow-up patient has a high level of independence, improvement in quality of life, lung function, and symptoms. This case report aims to highlight the significance of prompt diagnosis; treatment and most importantly rehabilitation incorporating early mobilization to get the patient back to his functional state. A scheduled exercise program benefits the patient and also minimizes complications after surgery.

Keywords: Aortic valve replacement; rheumatic heart disease; rheumatic aortic stenosis; phase 1 cardiac rehabilitation; early mobilization; functional independence.
1. INTRODUCTION

Rheumatic valve infection is prevalent in developing countries. According to World Health Organisation, it results from an insult to the heart valves by one or several episodes of rheumatic fever, an autoimmune inflammatory infection in the throat due to Group A streptococci [1]. Rheumatic fever (RF) commonly affects school-aged children and is preceded by a Group A streptococcus infection that causes a slew of symptoms. Poverty, hunger, congestion, inadequate housing, and a lack of healthcare resources are all risk factors for streptococcal infection, highlighting the significant prevalence in underdeveloped nations. Except for heart valvular damage, which is the hallmark of RHD, other indications of RF disappear entirely. The most common cause of heart failure in children and young people is post-rheumatic valvulopathies [2]. This predominantly, later in life leads to heart valves damage with the mitral valve being the most common followed by the aortic valve. Standard aortic valve replacement (SAVR) is the classic commonly used approach for aortic valve surgery and is performed through a median sternotomy with a cardiopulmonary bypass with excellent outcomes [3].

Because of the evolving disease trend and the anticipated rise in healthcare burden for the patient who undergoes heart valve surgery, a well-established after-care service is needed to look after the patient's post-surgical issues. Physical and psychological problems, as well as the difficulty in getting to work, are among them. Post-surgical complications like physical, mental, or social might delay the recovery process and negatively impact health-related quality of life leading to increased risk of mortality and morbidity, re-admission, and overall increase healthcare cost [4]. Taken together, early mobilization which is an application of physical activity within the first two to five days of critical illness or injury, works as an effective countermeasure the effects of bed rest, may prevent a decrease in aerobic capacity, and patients undergoing early mobilization might walk a longer distance during the 6MWT as a result of the prevention of dysfunction due to bed rest and making patient more functional independent [5].

2. PATIENT INFORMATION

A 26-year-old male student came in medicine OPD with a complaint of breathlessness on exertion (New York heart association grade II) which was on and off in course and dizziness. It was gradual in onset and progressive in nature. Dyspnea aggravates while performing any physical activity which results in fatigue and palpitations and relieved at rest. He then underwent various investigations including Chest X-ray, electrocardiography, and Echocardiography. A patient diagnosed with RHD with severe Aortic stenosis with mild tricuspid regurgitation. So the patient has advised admission to the Cardiovascular and thoracic surgery (CVTS) unit for Aortic valve replacement surgery. All routine investigations and monitoring were done then he was operated on 14/05/2021 for Aortic valve replacement surgery using TTK CH 25 prosthetic valve. On the post-operative day (POD) 1, the patient reported a complaint of pain at the incision site, cough, and difficulty breathing for which he was referred for Physiotherapy.

2.1 Timeline

Date of admission:	10/05/2021
Date of Aortic valve replacement surgery:	14/05/2021
Date of Physiotherapy:	15/05/2021
Rehabilitation:	
Date of discharge:	28/05/2021
Date of follow up:	20/06/2021
3. DIAGNOSTIC ASSESSMENT

The routine blood reports and urine examination did not reveal any abnormality. Pre-operative echocardiography revealed severe aortic stenosis, mild tricuspid regurgitation secondary to rheumatic heart disease. Intra-operative findings revealed severe calcified aortic valve leaflets and mild tricuspid regurgitation. Post-operative posterior-anterior view Chest X-ray shows cardiomegaly, sternal sutures, and prosthetic heart valve. (Fig: 1)

On POD 1 to 3, the Patient was on 4-liter oxygen via face mask on CVTS ICU, nebulization followed by chest physiotherapy in modified postural drainage position was given for airway clearance. Postural training, splinted coughing, deep breathing exercises, and in-bed mobility exercises were given with proper sternal precautions. Incentive spirometer, a device that facilitates sustained maximal inspiration with incorporated visual indicators of performance (inspiratory effort) was initiated 3 to 4 times a day and he was able to perform up to 600 cc with less than 1 second holds. Sitting was practiced by the patient for 15-30 minutes 2-4 times a day. Leg exercises, reclining upright chair and limited ADLs were performed.

On POD 4, the patient was shifted to the CVTS ward and he was maintaining saturation on room air. Edge of bed standing and walking initiated with minimal assistance along with previous exercises with increased repetitions was done. On POD 6 ambulation along the hallway up to 5 minutes as tolerated by the patient for 3-4 times a day was done with regular vitals monitoring. Standing leg exercises. On POD 8 and 9, the patient was able to practice independent ambulation in the hallway. Teaching the patient use of Borg’s scale for perceived exertion and appropriate parameters with activity was done. Monitoring of vitals in sitting and standing before activity, immediately after the following activity, and 5 minutes after activity was continued.

Hall ambulation was practiced for 10 minutes 3-4 times a day on POD 10 to 14 along with previous exercises. The patient was able to perform incentive spirometer more than 900 cc. Standing trunk and arm exercises and thoracic mobility exercises and stair climbing were initiated. The patient was educated about wound cleaning and dressing along with sternal precautions. He was trained about a home exercise program and monitoring of vitals and symptom recognition and appropriate activity guidelines. Along with this, he was provided with written information on outpatient cardiac rehabilitation and home exercise program.
Fig. 2. Block diagram of Cardiac Rehabilitation OPD

Table 2. Shows outcome measures

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>Pre-Rehabilitation</th>
<th>At the time of discharge</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York Heart Association</td>
<td>Grade IV</td>
<td>Grade II</td>
<td>Grade I</td>
</tr>
<tr>
<td>Functional Classification grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirometric measurement</td>
<td>600cc</td>
<td>1200cc</td>
<td>1200cc</td>
</tr>
<tr>
<td>Kansas City Cardiomyopathy</td>
<td>28</td>
<td>67</td>
<td>82</td>
</tr>
<tr>
<td>Questionnaire (KCCQ).</td>
<td>(Poor to fair)</td>
<td>(fair to good)</td>
<td>(good to excellent)</td>
</tr>
</tbody>
</table>

3.2 Follow Up and Outcome

At the end of 2 weeks of cardiac rehabilitation, the patient was able to perform all activities of daily living and doesn’t complain of any pain or breathlessness. There was improvement seen 82 (good to excellent) measured using KCCQ which is a self-administered, 23-item questionnaire that quantifies physical limitations, symptom stability, symptoms, self-efficacy, social interference, and HRQoL in such patients. Follow up after 2 weeks he was well motivated and was willing to
continue physiotherapy. He visited the Physiotherapy OPD frequently and was introduced to a home exercise program.

4. DISCUSSION

Rheumatic heart disease-causing symptoms either pre-operatively or post-operatively adversely decline a patient's quality of life irrespective of a choice of treatment either repair or replacement. The clinical guideline for such patients emphasizing the importance of rehabilitation post valvular operation is still rare [5,6]. The goal of cardiac rehabilitation is to improve an individual's exercise capacity, exercise efficiency, exercise tolerance, self-management, and improve quality of life. In the aspect of rehabilitation, we started phase-1 Cardiac rehabilitation on POD 1 in the hospital and continue after discharge in a supervised setting eventually transitioning to a home-based program along with follow-up every 2 weeks [7].

This case study is mainly focused on early rehabilitation and the prevention of complications. In this case, our management focused in line with the previous studies which states that cardiac rehabilitation increases exercise capacity and quality of life, and facilitates return to work, with minimal risk of significant adverse effects. Initiation of early physiotherapy post-operatively soon led to improvement in the patient's activities of daily living [8,9]. Several studies on this aspect are reflected including Evaluation of functional capacity post valvular operation also shows positive changes in ejection fraction and decline of New York Heart Association dyspnea grades [9,10]. Cardiac rehabilitation is a tried-and-true treatment for people who have had heart surgery. The current single case study adds to the existing evidence on the efficacy of cardiac rehabilitation in improving the patient's overall condition post Aortic valve replacement in young adults. Outcome measures revealed an improvement in the patient's overall quality of life as well as lung capacity. Thus, tailored phase I cardiac rehabilitation can be used effectively in patients who have had aortic valve replacement surgeries.

5. CONCLUSION

This case report aims to highlight the significance of prompt diagnosis; treatment and most importantly rehabilitation to get the patient back to his functional state. A scheduled exercise program benefits the patient and also minimizes complications after surgery.

CONSENT

A proper informed consent was taken from the patient prior.

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Rheumatic Heart Disease [Internet]. [cited 2021 Mar 26]. Available:https://www.who.int/news-room/fact-sheets/detail/rheumatic-heart-disease

© 2021 Ingale et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/78108