Effect of Pulsed Electro-Magnetic Field (PEMF) Therapy and Conventional Physiotherapy on Lipid Profile- A Randomised Control Trial

Mitushi Deshmukh a* and Neha Chitale a

a Department of Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi Meghe, Wardha, Maharashtra, India.

ABSTRACT

Introduction: The varying levels of lipids in the blood is defined as lipid profile, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglycerides are most commonly reported. Pulsed Electromagnetic field therapy, is a therapy involves powerful pulsed energy waves passing through injured and damaged area of body of patients. Waves of pulsed electromagnetic field are painless and quick to pass through the damaged cells in the damaged region, increasing the oxygen pressure activating and regenerating cells.

Methodology: A Total of 40 subjects will be included in the study. Divided in two groups 20 in group 1 and 20 in group 2. Group 1 will receive Pulsed electromagnetic field therapy (PEMF) with aerobic and resistance exercises while Group 2 will receive aerobic and resistance training exercises as conventional physiotherapy technique.

Discussion: 13 meta-analyses were categorized by Pedersen and Saltin, they have reported lipid profile involvement following exercise. They have described that exercise have a positive effect on the pathogenesis, physical fitness of individuals with dyslipidaemia. Effect of exercise profile on lipid have been stated in few studies. This study will focus on studying the impact of pulsed electromagnetic field therapy on lipid profile.

Conclusion: Conclusion will be drawn based on the outcome measures of the study and the statistical analysis.
Keywords: PEMF; lipid profile; physiotherapy; rehabilitation.

1. INTRODUCTION

Lipid profile includes low density lipoprotein, high density lipoprotein and triglycerides [1]. High levels of LDL cholesterol indicate blood contains surplus lipids, which lead to cardiovascular complications. High density lipoprotein helps transports lipids to the liver for disposal; because of which high levels of HDL cholesterol indicates healthy cardiovascular system [2]. Total cholesterol or lipid profile is the term commonly used for total count of LDL, HDL and triglycerides. Measuring all the three aspects together is misleading. More sensitive measures report, for example, the total HDL cholesterol ratio, or non-HDL cholesterol levels (i.e. all cholesterol variables that are positively associated with cardiovascular disease [3].

There is a direct relationship between cholesterol levels and ischemic heart diseases. So, we need to keep the cholesterol levels in normal range to prevent ischemic heart diseases. Studies have proved that exercise have helped in reducing the cholesterol levels [4].

Pulsed Electromagnetic field therapy (PEMF), using this particular process involves directing powerful pulsed energy waves toward damaged or injured area of patient’s body [4]. These waves are painlessly and quickly pass through the cells in the damaged cells in the damaged region, increasing the oxygen pressure activating and regenerating cells. PEMF is a cellular exercise for your body. It works in conjunction with the body’s own recovery system. Our skins, bones and organs are composed of tiny cells. The membrane of a healthy cell has both positive and negative charges that are required. When a cell became distressed due to disease, trauma or toxin, they lose their ability to function efficiently. PEMF restores the positive and negatives charges of the cell [5].

It is already proven that exercise helps in maintaining the lipid profile. As cholesterol level is one for the problem faced by 1 of 10th individual, a need exists to see for a better way to manage cholesterol levels. So, this study need to be conducted to see the effect of pulsed electromagnetic field therapy on cholesterol levels and the complete lipid profile.

2. METHODOLOGY

2.1 Study Setting

Study will be conducted in Out patients department of Ravi Nair Physiotherapy College

2.2 Study Design and Sample Size

It is a randomised control trail study. Total 40 samples will be included, 20 in Group 1 and 20 in Group 2. Sample size was calculated used G*Power analysis.

2.3 Selection of Samples

2.3.1 Inclusion criteria

Subjects with intermittent level of total cholesterol, low density lipoprotein and triglyceride. In age group of 40-60 years of both genders.

2.3.2 Exclusion criteria

History of Myocardial Infarction. Any recent abdominal surgery. Pregnant women will be excluded. Chronic smokers will be excluded. Subjects with pacemakers or with the history of organ transplant will be excluded. Individuals with high fever will be excluded as well.

2.4 Recruitment Procedure

Patients who visited Physiotherapy OPD in Acharya Vinoba Bhave Rural Hospital with complain of increases cholesterol levels and who fulfilled the inclusion criteria will be included.

2.5 Procedure

2.5.1 Timeline of the study

Study duration is of 1 year and intervention duration is 3 weeks so participant will be enrolled during first 11 months of study so 3 week intervention will be completed successfully. Assessment will be done on 1st day of visit then in midway (1st week) and end (3rd week) of intervention
2.5.2 Implementation

Research coordinator and principal investigator will supervise randomization. Participants will be asked to manually select from the envelope, sealed group allocation for the recruitment into either group.

2.6 Study Procedure

Subjects with intermediate lipid profile level who satisfies the inclusion criteria will be included in the study.

Subjects will be randomly divided into two Groups - Group 1 and Group 2. Group 1 will receive PEMF for 30 minutes along with aerobic and resistance training while Group 2 will receive aerobic and resistance training as conventional physiotherapy intervention.

Group 1: Subjects will be explained about the pulsed electromagnetic field therapy. Patients will be asked to sit in a comfortable position PEMF therapy device will be kept on the chest region of the subject for 30 minutes and the machine will be turned on. Patient will be monitored while receiving the treatment. Post 30 minutes of PEMF, patient will be given aerobic training for the first week progressed to aerobic training and resistance training.

Group 2: Subjects will be given aerobic exercises and resistance training as a control group. Initially aerobic training will be given for 1st week followed by aerobic training and resistance training in 2nd and 3rd week.

2.7 Outcome Measures

2.7.1 Primary outcome measure

Blood Lipid Profile- Blood lipid profile will be done pre and post intervention and the levels of low density lipoprotein, very low density lipoprotein, triglycerides will be seen.

2.7.2 Secondary outcome measure

Quality of Life- Quality of life will be assessed using SF 36 scale pre and post intervention

3. DATA COLLECTION AND MANAGEMENT

3.1 Data collection

Information about study given at time of recruitment (elaborating the purpose, nature, procedure, benefits and after effects of the intervention) with all baseline tests and assessment will be repeated on 2 more occasions.

3.2 Statistical Analysis

Data collected will be noted down and then will be placed in a tabular format. It will be analyzed with the help of SPSS latest version. Both statistical analyzes should be conducted with a 95% confidence interval (p-value < 0.05) to assess effect of two measures. Homogeneity of the two study classes will be tested for individual studies using the Student's t test. Mann-Whitney U will be used for comparing Groups at baseline.

4. DISCUSSION

13 meta-analyses were categorized by Pedersen and Saltin, they have reported lipid profile involvement following exercise. They have described that exercise have a positive effect on the pathogenesis, physical fitness of individuals with dyslipidaemia. Effect of exercise profile on lipid have been stated in few studies. This study will focus on studying the impact of pulsed electromagnetic field therapy on lipid profile. The mechanisms may include increases in lecithin-cholesterol acyltransfer (LCAT)—the enzyme responsible for ester transfer to HDL cholesterol, which has been shown to increase following exercise training [6].

In this article the researchers will check the effect of PEMF therapy on the lipid profile of the subjects. In terms of mechanism of action, one hypothesis is that PEMF may induce Eddy currents in biological tissue, which could in turn mediate downstream biological effects. Recent evidence suggests that SCS and PEMF can mediate changes in gene expression, including genes implicated in pain pathways such as endogenous opioids and eicosanoid enzyme pathways [7].

5. CONCLUSION

Conclusion will be drawn based on the outcome measures of the study and the statistical analysis

CONFIDENTIALITY

The study program will be explained to the participant, the principal investigator will take
subjective information. The consent form will include the confidentiality statement and signatures of the principal investigator, patient and a witnesses. If required to disclose some information for the study, consent will be taken from the patient with complete assurance of his confidentiality.

CONSENT

Principal Investigators will obtain the written informed consent from the participant on a printed form (local language) with signatures and give the proof of confidentiality.

ETHICAL APPROVAL

Ethical approval will be obtained from the university. Sampling will be started after the ethical approval. The participant individuals of the study and DMIMSU who will fund it will be able to retrieve findings of study. After completion of study and publication of results data will be stored in the DMIMSU data repository.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES


4. A_Review_of_the_Impact_of_Exercise_on_Ch20160123-16221-s8nbe4-with-cover-page-v2.pdf [Internet]. [Cited 2021 Dec 11]. Available:https://d1wqxts1xze7.cloudfront.net/41486669/A_Review_of_the_Impact_of_Exercise_on_Ch20160123-16221-s8nbe4-with-cover-page-v2.pdf?Expires=1639242861&Signature=QrxQi5FaQZPTXuJuwm~SR6CqJlEf2DXJY6~LigHUWrGF-JHTZzpOBGLORE4QT5HmYCWChZZK6XdqZlFN2V6rhZkCrOkA24P539b9F9WuZqG6kdu8K6a901m8lf6znZ28C134Wc17C0jZi235TQddkyJ 우리의 8HN-8nnz-ICVRLV GARtv54-Jyo-ITxosDlsPRg4WkQFz9QJyb57fJeJAgCW SOP0DdC9A2uYi17L-BtTqEcl1h4dDSjQ0Yu7MxkBtksxvKrlLelHxvFl2nu9kEewAg8XzFWOhxJwcMlp-9MpmdEdGsUsz5~UQ5WBKTsNK6kr1YP


Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/76792