Role of Pentraxin-3 in Periodontal Inflammation - A Comprehensive Review

Syed Wali Peeran a, Ahmed Elhassan b, Tazeen Dawood c, Karthikeyan Ramalingam d, Syed Ali Peeran e, Fatma Ahmed f and Abdul-Aziz Ahmed A. Adawi g

a Department of Dentistry, Armed Forces Hospital Jizan, Jizan, KSA.
b Benghazi College of Dentistry, Benghazi University, Benghazi, Libya.
c Department of Preventive Dental Science, College of Dentistry, Jazan University, KSA.
d Department of Oral Pathology, Saveetha Dental College, Chennai, India.
e College of Dentistry, Jazan University, KSA.
f Faculty of Dentistry, Sebha University, Sebha, Libya.
g Armed Forces Hospital Jizan, Jizan, KSA.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i55A33824

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/77998

ABSTRACT

Acute phase reactants like C-reactive protein (CRP), and pentraxin 3 (PTX3) are increased with inflammation and tissue injury. PTX3 is an acute phase protein and a member of the long pentraxin family. CRP is synthesized in the liver but PTX3 is generated locally at the inflammatory site. It is a fluid-phase pattern-recognition molecule that regulates antimicrobial immunity and inflammation by interfering with selectin-dependent neutrophil recruitment and regulating the complement cascade. Hence, PTX3 could be used as a potential biomarker to identify inflammatory response in both acute and chronic diseases. In this review, we discuss the role of PTX3 in periodontal inflammation.

Keywords: Acute phase reactants; pentraxins; PTX3; periodontitis; inflammation.

*Corresponding author: E-mail: karthikeyanr.sdc@saveetha.com;
1. INTRODUCTION

Pentraxins are a superfamily of ancient evolutionarily conserved versatile pattern-recognition proteins made up of five identical subunits. The pentraxins are divided into two groups based on the subunit's primary structure: short pentraxins and long pentraxins. The C-reactive protein (CRP) and serum amyloid P-component (SAP) comprise the two short pentraxins, while Pentraxin-3 (PTX-3) is the long pentraxin prototype protein group. In the case of acute inflammation, CRP and SAP, are produced primarily in the liver, whereas PTX3 is produced in a variety of tissues [1]. PTX-3 is the most studied protein among the superfamily of Pentraxins. Hence in this review, the authors aim to brief the role played by PTX-3 in inflammation with an emphasis on its role in periodontal inflammation.

1.1 Pentraxin-3: Structure and Functions

PTX-3 is also called tumor necrosis factor-stimulated gene 14. It is a prototypic soluble long pentameric structural protein-containing of 381 amino acids [2,3,4]. PTX3 is produced mainly by dendritic cells, endothelial cells and macrophages in response to primary inflammatory stimuli [5]. PTX3 plays complex, non-redundant functions in vivo. It interacts with several ligands and acts as a predecessor of antibodies, recognizes microbes, activates complement, facilitate certain pathogen recognition and protective responses by phagocytes [6,7]. Hence, PTX3 has an essential role between innate immunity, various inflammatory processes, tissue repair, female fertility and cancer biology [2,8].

Structurally, the long pentraxin 3 (PTX3) is a member of a complex superfamily of multifunctional proteins characterized by a cyclic multimeric structure [6]. PTX3 is a long pentraxin with a cyclic multimeric structure with an unrelated N-terminal domain linked to a pentraxin-like C-terminal domain which is required for c1q recognition and complement activation [2,8].

Fig. 1. PTX3 as biomarker in Periodontitis
Table 1. Functions of Pentraxins

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Role of Pentraxins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue Repair</td>
<td></td>
</tr>
<tr>
<td>Zlibut et al 2009 [13]</td>
<td>PTX3 increases the matrix metalloproteinases synthesis. It increases the MMP synthesis directly or by blocking NO synthesis.</td>
</tr>
<tr>
<td>Doni et al 2006 [14]</td>
<td>PTX3 is a component of extracellular matrix and models the tissue in chronic inflammation.</td>
</tr>
</tbody>
</table>

Innate immunity	
Iwasaki and Medzhitov 2010 [15], Bonacina et al 2013 [16]	PTX3 recognizes and binds to various ligands including microbial moieties, complement components, and P-selectin. It recognizes the pathogen-associated molecular patterns (PAMPs) expressed by microorganisms and binds a number of bacteria, fungi, and viruses. PTX3 plays a vital role in Humoral Immunity.
Doni et al 2006 [14]	PTX3 is an essential tuner of inflammation. It has multifunction soluble pattern recognition property. It works in tandem with other components of inflammation.
Inflammation	
Deban et al [17], Agarwali et al 2009 [1]	PTX3 is an essential tuner of inflammation. It has multifunction soluble pattern recognition property. It works in tandem with other components of inflammation.

Other Functions	
Bonacina et al 2016 [18]	PTX3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation
Rodriguez-Grande B et al 2014 [19]	PTX3 is an essential mediator of glial scar formation and resolution of brain oedema after ischemic injury
Role of Pentraxins

- PTX3 is protective against invasive aspergillosis (Armstrong-James and Harrison, 2012)
- PTX3 plays a cardiovascular protective effect (Garlanda 2011)
- PTX 3 leads to release of leukocytes during acute myocardial infarction (Maugeri N et al. 2011)
- Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis (Bonacina F 2013)
- Antiviral activity (PTX3 against Influenza Viruses and dengue virus) (Reading PC et al. 2008)
- PTX3 is a suppressor of complement-dependent inflammation in cancer (Mairuhu AT 2005)
- PTX3 is a suppressor of complement-dependent inflammation in cancer (Bonavita E et al. 2005)
- Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis (Rusnati M et al. 2004)
- Atherosclerotic lesions in humans showed strong expression of PTX3 (Rolph MS et al. 2002)

Table 2. Pentraxin-3: Its association with various diseases and possible use as a disease biomarker

<table>
<thead>
<tr>
<th>Author/s: Year</th>
<th>Pathogenesis</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunetta et al 2021 [28]</td>
<td>High levels of PTX3 are expressed by myelomonocytic cells and endothelial cells in patients with COVID-19. Independent strong prognostic indicator of short-term mortality. PTX3 Serum level is positively correlated with COVID-19 disease severity and coagulopathy.</td>
<td>COVID-19</td>
</tr>
<tr>
<td>Tong et al 2021 [29]</td>
<td>PTX 3 stimulates vascular inflammation by modulating inflammatory cells. It is involved in endothelial dysfunction via several pathogenetic pathways.</td>
<td>Vascular inflammation & Vascular endothelial Dysfunction</td>
</tr>
<tr>
<td>Zlibut et al 2019 [13], Ching et al 2020 [30]</td>
<td>GCF and Salivary PTX3 concentrations may have diagnostic potential.</td>
<td>Periodontal tissue inflammation</td>
</tr>
<tr>
<td>Fujita et al 2012 [31], Pradeep et al 2011 [32]</td>
<td>It is a biomarker for vascular pathology. It correlates with events that have the risk of developing vascular events.</td>
<td>Vascular pathology</td>
</tr>
<tr>
<td>Gumus et al 2014 [33]</td>
<td>PTX3 expression in skin from Systemic sclerosis was more intense relative to skin of healthy individuals. Serum PTX3 levels increase with the disease severity in systemic sclerosis.</td>
<td>Systemic Sclerosis</td>
</tr>
<tr>
<td>Iwata Y 2009 [34]</td>
<td>PTX3 is a reliable prognostic inflammatory disease marker.</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Bevelacqua et al.2006 [35]</td>
<td>Predictor of all-cause mortality</td>
<td>Chronic Kidney Disease</td>
</tr>
<tr>
<td>Ctirad et al 2008 [36]</td>
<td>PTX3 levels increase in critically ill patients. This increase directly correlates with the severity of disease and infection</td>
<td>Critically ill patients</td>
</tr>
</tbody>
</table>
1.2 Circulating Pentraxins Concentrations

PTX3 is an acute phase response protein. The blood levels of PTX3 is low in normal conditions and is < 2 ng/mL in humans, increase rapidly (peaking at 6–8 h after induction) and dramatically high (200–800 ng/mL) during certain conditions like endotoxic shock, sepsis and other inflammatory and infectious conditions mentioned in table 1, correlating with the severity of the disease. PTX3 is a rapid marker for primary local activation of innate immunity and inflammation [38, 39, 24, 40, 69, 71] Thus the circulating levels of PTX3 is related to the severity of various diseases [41]. PTX3 could be identified in serum of patients with lung cancer, thoracic surgery, diabetes, pulmonary contusion, pulmonary artery hypertension, myocardial infarction [65, 66, 67,68, 70, 72-78]

1.3 Pentraxins in Periodontal Inflammation

PTX3 is expressed in response to inflammatory stimuli, including TNF α, IL-1β and LPS by a variety of cell types in periodontal tissue like neutrophils, fibroblasts, monocytes/macrophages, dendritic cells, epithelial cells, endothelial cells and vascular smooth muscle cells, adiposities, dendritic cells [42,43]. The plasma levels of PTX3 as mentioned above are very low in normal subjects and are raised in inflammatory conditions resulting from a wide range of disease states from infections to autoimmune and/or degenerative disorders [44]. Its levels may directly reflect the inflammatory status because PTX3 is produced from vascular endothelial cells and macrophages, not as CRP which is produced in the liver. In addition; short pentraxins are conserved during phylogenesis. This possibly indicates that PTXs confer a survival advantage. For the above reasons; the measurements of PTX3 in GCF or plasma may help identify patients who are at a higher risk for destructive disease, or those patients who are undergoing a process of periodontal breakdown [59,44,45].

Furthermore, infectious diseases of the bone, like periodontitis and osteomyelitis, set the scene for even tighter cooperation between bone and immune components, as exemplified by the involvement of the complement system in the onset and progression of periodontitis [46].

Fig. 3. Role of PTX3 in bone resorption (Choi et al [47])
Table 3. Pentraxin-3 and Periodontal inflammation

<table>
<thead>
<tr>
<th>Author/s-Year</th>
<th>Biological sample</th>
<th>Pathogenesis/ Biological effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leira et al 2020 [48]</td>
<td>Experimental Periodontitis in rats-Serum</td>
<td>Increase in serum PTX3 levels post-induction. Periodontitis is associated with increased systemic inflammation. Gingival tissues of periodontal patients showed increased levels of PTX3 and sTWEAK compared to non-periodontally affected tissues.</td>
</tr>
<tr>
<td>Keles et al 2012 [49]</td>
<td>Gingival and serum PTX3 levels in Experimental Periodontitis - Rats</td>
<td>PTX3 seems to be associated with tissue destruction in earlier periods of inflammatory periodontal disease, contrary to the fibrinogen findings. Alveolar bone resorption and periodontal inflammation were evident in periodontitis groups. Levels of PTX3 in gingival tissue were statistically higher in Group 1 than those in groups 2 and 3. Plasma fibrinogen levels were significantly increased in the experimental periodontitis groups.</td>
</tr>
<tr>
<td>Leira et al 2020 [50]</td>
<td>Serum</td>
<td>Increased PTX3 levels as compared to Chronic migraine without periodontal disease.</td>
</tr>
<tr>
<td>Temelli B et al 2018 [51]</td>
<td>Serum levels of PTX3</td>
<td>PTX3 levels positively correlate with periodontal inflamed surface area in Coronary artery disease (-) groups. Patients aged from 30 to 75 years who underwent coronary angiography with coronary artery disease CAD suspicion were included. One of the plausible mechanisms in the relationship between periodontitis and CAD is the systemic inflammatory burden comprised of circulating cytokines/mediators related to periodontitis.</td>
</tr>
<tr>
<td>Leira et al 2019 [52]</td>
<td>Serum</td>
<td>PTX3 is independently associated with levels positively correlated with periodontally inflamed surface area in patients with poor prognosis.</td>
</tr>
<tr>
<td>Mohan et al 2019 [53]</td>
<td>GCF and Saliva</td>
<td>Scaling and root planing led to a reduction in PTX3 levels. This reduction was greater in periodontitis patients who smoked than those who were nonsmokers.</td>
</tr>
<tr>
<td>Wettero et al 2021 [54]</td>
<td>Saliva</td>
<td>PTX3 was detectable in saliva, and it reflected the local inflammation. PTX3 concentrations varied over the day with higher morning concentrations, but the PTX3 relative protein levels (percentage of total protein) were significantly higher in the evening. Smoking showed lower PTX3 levels.</td>
</tr>
<tr>
<td>Gheorghe et al 2021 [55]</td>
<td>GCF</td>
<td>CRP and PTX3 correlated with levels of periodontal inflammation. It reduced with non-surgical periodontal therapy. In chronic hepatitis C patients with periodontitis, the gingival fluid levels of pro-inflammatory markers reduced significantly.</td>
</tr>
<tr>
<td>Boyapati et al 2018 [56]</td>
<td>Serum</td>
<td>PTX3 is significantly correlated with clinical periodontal parameters such as pocket depth, clinical attachment loss and periodontal inflamed surface area. Higher levels of PTX3 correlated with peripheral arterial disease and periodontal disease.</td>
</tr>
<tr>
<td>Mohan et al 2019 [53]</td>
<td>GCF and Serum</td>
<td>Non-surgical periodontal therapy consisting of scaling and root planing led to a statistically significant reduction of PTX3 levels.</td>
</tr>
<tr>
<td>Vijayalakshmi et al</td>
<td>GCF</td>
<td>At baseline, PTX3 levels in both groups of patients...</td>
</tr>
<tr>
<td>Author/s-Year</td>
<td>Biological sample</td>
<td>Pathogenesis/ Biological effect</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>2017 [57]</td>
<td></td>
<td>with chronic periodontitis were found to be significantly higher. Scaling and root planing led to an improvement in the clinical parameters and a statistically significant reduction of PTX3 levels. PTX3 in the gingival crevicular fluid increases with an increase in inflammation, irrespective of the presence or absence of systemic diseases. PTX-3 is associated with periodontal remodeling under the effect of orthodontic forces. PTX3 has a role in the inflammation and angiogenesis in wound healing in patients with post orthodontic gingivectomy. PTX3 levels correlated positively with clinical parameters in periodontitis. PTX3 levels correlate with periodontal tissue inflammation. GCF levels of PTX3 can be used as a marker of periodontal tissue healing. PTX-3 involvement in periodontal orthodontic remodeling and the aseptic inflammation induced by the orthodontic forces. PTX3 levels increase at early time points. A strong correlation between PTX3 and periodontal status was observed.</td>
</tr>
<tr>
<td>Thukral et al 2017 [58]</td>
<td>GCF</td>
<td></td>
</tr>
<tr>
<td>Rauten et al 2016 [59]</td>
<td>GCF</td>
<td></td>
</tr>
<tr>
<td>Lakshmanan et al 2014 [60]</td>
<td>Gingival tissue sample</td>
<td></td>
</tr>
<tr>
<td>Gumus et al 2014 [61]</td>
<td>Saliva and Serum</td>
<td></td>
</tr>
<tr>
<td>Elgendy et al 2013 [62]</td>
<td>GCF</td>
<td></td>
</tr>
<tr>
<td>Surlin et al 2012 [63]</td>
<td>GCF</td>
<td></td>
</tr>
<tr>
<td>Fujita et al 2012 [31]</td>
<td>GCF</td>
<td></td>
</tr>
<tr>
<td>Pradeep et al 2011 [32]</td>
<td>GCF and Serum</td>
<td></td>
</tr>
</tbody>
</table>

2. CONCLUSION

PTX3 is generated locally at the site of inflammation in response to chemokines and bacterial components. It may play an important role in modulating the cross-talk between inflammatory cells and endothelium in various diseases. It can act as a biomarker to estimate the disease activity in inflammation and help in patient management, follow-up and clinical trial designing. Mucosal immunity and possible clinical use of salivary biomarkers are being in focus for the past few years. Limited number of studies have previously described PTX3 in saliva or in gingival crevicular fluid (GCF). Many studies correlate the levels of PTX3 with increased periodontal destruction. Reported literature shows differences between the PTX3 levels in serum when compared to Saliva/GCF. Hence, large studies are needed to assess the diagnostic and prognostic value of PTX3 as a clinical biomarker.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

78. Gürsoy UK, Könönen E, eds. Use of Saliva in Diagnosis of Periodontitis: Cumulative Use of Bacterial and Host-Derived Biomarkers. Frontiers Media SA; 2017.

© 2021 Peeran et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/77998