Molar Incisor Hypomineralization from Inception to Intervention–Evidence Based Review

Rana A. Alamoudi a*

* Department of Pediatric Dentistry, Faculty of Dentistry, King Abdulaziz University, P.O.Box: 7270, Jeddah 21462, Saudi Arabia.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i50A33387

Editors:
(1) Dr. Syed A. A. Rizvi, Nova Southeastern University, USA.

Reviewers:
(1) Serghei Covântev, State University of Medicine and Pharmacy, Moldova.
(2) Dharmashree Satyarup, Siksha ‘O’ Anusandhan University, India.
(3) Dennis Flanagan, Lugano University of Switzerland, Switzerland.

Complete Peer review History: https://www.sciarticle4.com/review-history/75299

Received 10 August 2021
Accepted 15 October 2021
Published 15 November 2021

ABSTRACT

Background: Molar Incisor Hypomineralization (MIH) is considered a highly prevalent clinical problem worldwide. The etiology of MIH involves a complex interaction between systemic and environmental insults with possible genetic contribution. Early diagnosis is facilitated by collaboration between clinicians responsible for oral health management of the patient and is the key for enhancing the long-term prognosis and quality of life of affected children. MIH management is a formidable oral health challenge due to the wide spectrum of clinical presentation with the need for tailored treatment for the child affected by MIH condition.

Objective: To provide dental practitioners with an updated and evidence-based overview of MIH etiology, diagnosis, and treatments modalities available for its management.

Conclusion: In this review, recent clinical evidence on MIH etiology, diagnosis and treatment is presented. Given recent availability of sophisticated technologies there is an increasing number of treatment modalities now at the fingertips of all oral health clinicians alike, ranging from preventive measures, management of hypersensitivity to advanced restorative techniques. The tailored treatment plan should encompass a short and long-term approach requiring more frequent dental check-ups in order to achieve better outcomes and prognosis. Future translational clinical research to best practice that will enhance our understanding of the exact causes of MIH and allow development of standardized diagnostic criteria as well as optimal treatment strategies are warranted.

*Corresponding author: E-mail: rasalamoudi@kau.edu.sa;
Keywords: Hypomineralized tooth; hypersensitivity; molar incisor hypomineralization; MIH prevalence; MIH diagnosis; MIH treatment.

1. INTRODUCTION

Enamel development (amelogenesis) is a tightly regulated biological process that occurs through mineral deposition in form of hydroxyapatite crystals by the epithelially-derived cells called ameloblasts. Environmental insults, systemic exposures or inherited conditions are known to perturb amelogenesis. [1] Hypomineralization is one of the most common dental defects of developmental origin resulting from disturbances in ameloblast activity during various stages of enamel formation. [2] Molar incisor hypomineralization (MIH) in particular is among the foremost misdiagnosed dental conditions among children that have taken the spotlight in recent years and needs to be addressed in pediatric dentistry.

Originally reported nearly two decades ago, the term MIH described distinct enamel with varied severity of discolored demarcated opacities of systemic origin affecting at least one permanent molar and commonly present with affected incisors. [3] Based on this definition, in 2003 the European Academy of Pediatric Dentistry (EAPD) developed a set of guidelines for diagnostic classification of MIH according to exhibited enamel characteristics. [4] Hubbard and colleagues further coined MIH as an emerging socio-economic burden and a ‘silent public health’ concern. These enamel defects tend to fracture during eruption and cause not only dentin hypersensitivity but also increased susceptibility to caries. [5] Therefore, given the burden of disease and high prevalence of MIH in some populations, [6-7] the cost of these conditions to the affected families as well as the general community can be substantial.

The EAPD definition and set of diagnostic guidelines for MIH are considered to be limited in that they do not take into account the extend of enamel defects. [8] In addition, while MIH diagnosis is reported by some studies based on the presence of at least one affected first permanent molar (FPM), other studies have based the diagnosis on affected anterior teeth when an affected FPM was not present. [6] The presence of hypomineralization in other teeth including the second primary molars, cusp tips of second permanent molar and canines have been reported. [5] Furthermore, evidence from several studies and systematic reviews indicate hypomineralized second primary molars are highly predictive of MIH with a 33% increase in incidence of MIH if an affected primary tooth is diagnosed. [9-11] Consequently, a number of studies have adopted other terminologies and suggest that incisor hypomineralization (IH), molar hypomineralization (MH) or deciduous molar incisor hypomineralization (DMH) terms which take into account all the other affected teeth should be included as part of the MIH spectrum. [6, 12] In addition, there is inconsistency in applying diagnostic criteria that quantifies MIH enamel defects. While some studies report using EAPD system, others have applied modified criteria to include severity level of MIH or developed their own diagnostic criteria to account for extent of the defect. [6, 13] Despite these discrepancies, the prevalence of MIH remains high in the pediatric population and requires early diagnosis with the identification of ‘at risk’ MIH populations crucial for optimal management of the condition in these children.

The aim of this review is to provide dental practitioners with an updated and evidence-based overview of MIH etiology, diagnosis, and treatments modalities available for its management.

1.1 Evidence for Prevalence and Etiological Factors

Historically, MIH has been identified dating back to the medieval times [14] with the first epidemiology study of children reported by Koch nearly forty years ago. [15] As a global concern, MIH has highly variable rate of prevalence up to 40% according to different studies. This is likely due to differences in methodology, diagnostic criteria, age groups of the study population and regional factors [16] making it challenging to determine the prevalence accurately. [17] The prevalence of MIH ranges from approximately 2% to 8% in Bulgaria, [18] Germany, [19] Hong Kong, China, [20] Poland [21] and Saudi Arabia, [22] 12% to 19% in Canada, [23] Kenya, [24] Norway, [25] Finland [26] and Indonesia, [27] and 27 to 40% in Dubai-UAE, [28] Tanzania, [29] Denmark [30] and Brazil [31] in ascending order respectively.

Despite, the exact etiological factors for MIH not completely elucidated, during infancy period an association of MIH with childhood illnesses in
Table 1 summarizes available evidence reported in recent systematic reviews and meta-analyses on prevalence, etiology, and diagnosis of children with MIH condition.

Given that hypomineralization is a common clinical presentation of genetic anomalies of developmental origin such as dentinogenesis imperfecta, and that amelogenesis is tightly controlled by various genes, therefore MIH as a genetic condition seems more plausible than an idiopathic condition. [41, 44-45] The support for a genetic disposition further comes from a recent genome-wide association study that identified a potential genetic locus on chromosome 22 for MIH (SCUBE1 gene). [46] Moreover, MIH features are akin to some form of localized amelogenesis imperfecta with variations in genes expressed during amelogenesis such as ameloblastin (AMBN), amelogenin (AMELX) reported to be involved in enamel hypoplasia [47] and tuftelin (TUFT1) involved in enamel microhardness [48] may have a role in predisposing to or development of MIH experience in children.

The mineralization of the first permanent molars usually commences around birth and completed by the age of 5 years. During this period, the onset of hypomineralization can occur during disruption of enamel maturation stage. [49] Another important putative cause of MIH is presence of oral clefts which are 12 times more susceptible to tooth agenesis external to the cleft area (mandibular posterior teeth) resulting in significant disruption in enamel maturation process. [50] Nevertheless, irrespective of the specific cause of the amelogenesis disruption, during history taking it is important to note any relevant perinatal history or existing systemic conditions and closely monitor children with persistent illness during early years of childhood. [33]

2. DIAGNOSIS

A common feature of MIH is that the hypomineralized enamel tends to be more porous with lack of distinct crystal edges and greater interprismatic space compared to the completed mineralized enamel. [51] The porous hypomineralized enamel may also result in dentinal hypersensitivity [32] and enamel breakdown post-eruption due to masticatory forces. [52] Apart from functional impairment, patients experiencing MIH often have compromised quality of life as a direct result of...
poor esthetics when anterior teeth are involved and recurrent loss of restoration requiring more often dental visits. [32, 53].

As mentioned before, there is currently no standardization of the diagnostic criteria for MIH which takes into account the significant differences in severity of the condition intra and inter individuals. As a result, many studies have reported use of modified criteria to include measure enamel defect or developed a specific scoring system. [5, 24, 54] The current approach to classification of MIH is either according to EAPD scoring system or the Modified Developmental Defect of Enamel (DDE) index which accounts for both type and extent of the enamel defect and divided into 3 distinct categories: demarcated opacities, diffuse opacities, or hypoplasia. [55] A more recent diagnostic approach developed by Cabral and colleagues is based on severity of the MIH (MIH- severity scoring system). [56] A recent systematic review found high heterogeneity in use of scoring system and concluded that the lack of standardized indices potentially accounts for the high variability of prevalence reports and highlights the difficulty in comparing studies to develop an evidence-based guideline for MIH optimal management. [6]

3. EVIDENCE-BASED TREATMENT STRATEGIES

In children affected with MIH treatment is very challenging as not only the need is amplified but also achieving a highly satisfactory restoration of affected teeth long-term is required. By the age of nine children with MIH will require ten times more dental treatment compared to children with unaffected teeth with each affected tooth reportedly requires at least two treatment. [57] Moreover, management strategies are further complicated due to limited evidence for correlation between clinical presentation of the affected enamel with severity of MIH. [58] As a result, a broad spectrum of treatment modalities has been produced to address such differences including products for preventive or restorative treatment. [4, 8, 35] Furthermore, differential diagnosis is mandatory to exclude other dental conditions such as amelogenesis (or dentinogenesis) imperfecta, enamel hypoplasia and fluorosis. Collaboration between pediatricians and pediatric dentists is essential to reach an early diagnosis and achieve long-term satisfactory treatment outcomes for a healthier and happier child. [21, 59].

Depending on the severity of MIH a range of treatments have been found to be effective with longitudinal studies reporting their long-term success. Table 2 summarizes the evidence collected from recent systematic reviews on treatment modalities reported for children affected with MIH condition.

3.1 Preventive measures

Implementation of preventive measures following MIH diagnosis needs to be individually tailored and considered in light of collaborative efforts and patient factors including age, caries risk, hypersensitivity level as well as type and severity of the demarcated lesions. [53] Both initial risk assessment and early diagnosis are the key factors for an effective and conservative management of patients affected with MIH. The initial management phase should also include administration of remineralizing agent to affected teeth immediately after MIH diagnosis. [60]

3.1.1 Desensitizing agents

Several agents have been developed to address hypomineralized teeth issues. Bekes and colleagues [61] showed a significant reduction in hypersensitivity by applying an arginine paste to MIH affected teeth. The underlying mechanism involves stimulation of dentinal tubule obliteration by arginine thereby abolishing hydrodynamic pain activity. Following twice daily application of an arginine desensitizing paste on affected teeth for 8 weeks a considerable decrease in hypersensitivity was reported. [62-63] In clinic application of fluoride varnish as a desensitizing agent has also been found to alleviate dental hypersensitivity. [64-65] Further support of these clinical studies comes from a recent systematic review that showed the most effective preventive measures to reduce hypersensitivity were reported to be use of arginine pastes or fluoride varnishes. [66].

3.1.2 Sedative interim restorations

Interim restorations are feasible solution when it is not possible to achieve total comfort for the child during treatment. [67] Glass ionomers have been the gold standard interim restorative material for decades due to their sedative properties for hypersensitivity management. [68] A two-step procedure maybe applied during treatment to ensure the comfort of the child: The restorative procedure can be stopped and a sedative filling as an interim restoration
Table 1. Summary of evidence from systematic reviews and meta-analyses during last 10 years relate to prevalence, diagnosis and etiological factors in children affected with MIH

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Study design</th>
<th>Focus of study</th>
<th>Studies identified</th>
<th>Findings</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu et al. [43]</td>
<td>SR and MA</td>
<td>Etiology</td>
<td>SR: 17 studies, MA: 4 studies</td>
<td>MIH 3 times more prevalent in low birth-weight neonates (OR=3.28, 95%CI: 2.28–4.62)</td>
<td>MIH was higher association with premature birth and low birth weight</td>
</tr>
<tr>
<td>Fatturi et al. [39]</td>
<td>SR and MA</td>
<td>Systemic exposure</td>
<td>SR: 29 studies, MA: 27 studies</td>
<td>The following were associated with higher prevalence of MIH: Maternal illness during pregnancy (OR 1.40; 95% CI 1.18-1.65, P < 0.0001), psychological stress (OR = 2.65; 95% CI 1.52-4.63; P = 0.001), caesarean delivery (OR = 1.32, 95% CI 1.11-1.57, P = 0.001), delivery complications (OR = 2.06; 95% CI 1.47-2.88, P < 0.0001), respiratory diseases (OR = 1.98; 95% CI 1.45-2.70, P < 0.0001) fever (OR = 1.50; 95% CI 1.22-1.84; P < 0.0001)</td>
<td>During early life, MIH was highly associated with maternal illness, psychological stress, caesarean delivery & complications, respiratory diseases as well as fever. Since studies were heterogeneous and observational, findings should be interpreted with caution.</td>
</tr>
<tr>
<td>Americano et al. (2017)</td>
<td>SR</td>
<td>Caries</td>
<td>17 controlled-clinical studies</td>
<td>DMF index and caries prevalence were higher in children with MIH than in children without MIH</td>
<td>Significant association between MIH and dental caries</td>
</tr>
<tr>
<td>Pentapati et al. (2017)</td>
<td>SR and MA</td>
<td>Prevalence</td>
<td>61 studies</td>
<td>Lower prevalence in Asia compared with Europe and South America</td>
<td>MIH prevalence is 11% and varied geographically with mild variation in genders. Association between MIH and medication use is not sufficiently supported</td>
</tr>
<tr>
<td>Serna et al. [42]</td>
<td>SR</td>
<td>Systemic exposure</td>
<td>20 studies</td>
<td>Evidence for MIH associated with the following not sufficient: chemotherapeutic, antibiotics, asthma, antiepileptic, antiviral And antifungal drugs</td>
<td>MIH: considerable association with early childhood illness</td>
</tr>
<tr>
<td>Silva et al. [40]</td>
<td>SR</td>
<td>Etiology</td>
<td>25 MIH, 3 HSPM human studies</td>
<td>Limited associations: Prenatal factors such as maternal smoking, illness & medication use perinatal factors: low birthweight, prematurity and birth complications Significant association: Early childhood illness including fever asthma and pneumonia HSPM: significant association with maternal alcohol intake</td>
<td></td>
</tr>
<tr>
<td>Alaluusua [41]</td>
<td>SR</td>
<td>Etiology</td>
<td>28 MIH human & animal studies</td>
<td>Association with fever, hypocalcemia hypoxia & amoxicillin</td>
<td>Although correlation was found between MIH and putative factors including high fever, hypoxia and antibiotics, higher level of evidence required to verify multifactorial etiology</td>
</tr>
<tr>
<td>Jälevik [7]</td>
<td>SR</td>
<td>Prevalence & Diagnosis</td>
<td>24 MIH human studies</td>
<td>Inconsistent use of MIH criteria, variable examination and recording</td>
<td>For cross-comparison study designs and reporting need to be standardization</td>
</tr>
</tbody>
</table>

Abbreviations: HSPM: hypomineralized second primary molars; Meta: Meta-analysis
Table 2. Summary of evidence from systematic reviews and a meta-analysis on treatment modalities for children affected with MIH

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Study design</th>
<th>Aim of study</th>
<th>Studies identified</th>
<th>Follow-up (months)</th>
<th>Findings</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagrade et al. (2020)</td>
<td>SR</td>
<td>Identify best bonding protocols [Restorative]</td>
<td>4 clinical studies 2</td>
<td>3 to 24 months</td>
<td>No difference noted between self-etch and etch-rinse adhesives</td>
<td>Due to the heterogeneity of MIH severity and adhesives used definitive conclusions cannot be drawn</td>
</tr>
<tr>
<td>Coelho et al. (2019)</td>
<td>SR</td>
<td>Effectiveness of treatment interventions [Restorative & preventive] outcome and comparator choice [All outcomes]</td>
<td>12 clinical studies 1 (Both Molar and Incisors)</td>
<td>1 to 48 months</td>
<td>Treatments reported: Use of remineralizing products, resin infiltration, restorations, fissure sealants 11 outcomes reported related to: Restoration, hypersensitivity/pain, esthetic, effectiveness of anesthesia space management, prevention, mineral gain, quality of life, periodontal health, costs, & patient satisfaction. Comparators were restorative interventions, remineralization, hypersensitivity treatment, aesthetic and orthodontic interventions.</td>
<td>Most effective treatments: arginine pastes or fluoride varnishes</td>
</tr>
<tr>
<td>Elhennawy et al. [69]</td>
<td>SR & SNA</td>
<td>Identify MIH treatments and evaluate their performance [Restorative & preventive]</td>
<td>28 clinical 7 clinical 3 studies (Total 35 clinical studies)</td>
<td>1-99 m 1-6 m 3</td>
<td>Restorative failures: 12% fissure sealants, 12% glass-ionomer, 4% composite restorations. For hypersensitivity desensitizing agents were applied with 81% success after 1 month</td>
<td>Most primary outcomes: restoration success & pain management The limited number of studies reporting a wide range of outcomes indicates evidence is not robust</td>
</tr>
<tr>
<td>Elhennawy et al. (2016)</td>
<td>SR</td>
<td>Identify MIH treatments and evaluate their performance [Restorative & preventive]</td>
<td>10 clinical 4 clinical 3 studies (Total 14 clinical studies)</td>
<td>12-99 m 1-30 m 3</td>
<td>Treatment of choice for mild-moderate MIH: composite Severe MIH: case by case</td>
<td>Most studies were observational and not controlled. Treatment indication should be based on MIH severity and hypersensitivity Limited clinical trials found. Long-term clinical trials supported by laboratory Studies required</td>
</tr>
</tbody>
</table>

1 Other studies were on dental fluorosis (21 studies. 2 Also 6 laboratory studies, 3 studies reporting on incisors affected by MIH; Abbreviations. SNA: social network analysis;
administered to help soothe the highly reactive tooth. After 1-2 weeks, the restorative procedure can be revisited with now a more easily anesthetized tooth and a more successful definitive restoration placed. This could particularly be a useful strategy in shorter and more comfortable appointments that allow younger patient to cooperate better. [60] Recent evidence from clinical studies has also shown glass ionomer to have a low failure rate as a restorative material over three years. [69]

3.1.3 Fissure sealants

These preventive measures are considered one of the most effective and successful treatments of MIH teeth. [67] Lygidakis and colleagues [70] reported that fissure sealant application using a two-step (etch-and-rinse) adhesive system had a higher retention rate than sealants without application of an etch. In addition, the retention of a resin-based sealant in hypomineralized molars was significantly higher than use of a glass ionomer sealant. [71]

3.2 Restorative Measures

3.2.1 Resin composites

Although the evidence for the use of self-etch and etch-rinse adhesives with composite resin indicates no difference in terms of effectiveness for treatment of MIH teeth, nevertheless due to diverse reports in adhesives and techniques definitive conclusions cannot be reached. [72] Studies have found that the success rate of resin self-etch or total-etch adhesives is considerably lower at 18 months [73] likely due to the enamel defect that compromises the successful adhesion of the resin to the affected dental surface. [51, 74] However, Sönmez and Saat showed that following removal of the entire affected enamel, restoration of the hypomineralized teeth with a resin composite was highly successful when compared to restorations with limited removal of clinically defective enamel tissue. [75] In addition, two coats of adhesive would be required for long-term success of the restoration since the porous hypomineralized surface in MIH absorbs the first adhesive coating. [76]

3.2.2 Resin infiltration

The application of resin infiltrate in arresting non-cavitated carious lesions has been recently demonstrated. [77] However icon infiltration in MIH-affected enamel has been only evaluated in experimental studies [72] and further research is required to explore this technique on clinically hypomineralized enamels.

3.2.3 Amalgam restorations

Since amalgam is a non-adhesive restorative material and placement of mechanical retention further weakens the tooth structure, therefore it is best to be avoided in these atypically shaped cavities. [78]

3.3 Esthetic Measures

3.3.1 Bleaching for esthetics

The use of hydrogen peroxide or carbamide peroxide formulations administered at different bleaching concentrations resulted in esthetic improvement in all cases with MIH. [66].

3.3.2 Microabrasion for esthetics

This is a minimally invasive technique which involves removal of external enamel surface defects via an abrasion and chemical erosion (18% hydrochloric acid) technique. The limitation of this technique is that treatment success depends on the depth of the discoloration. Moreover, this procedure should be limited to more superficial enamel defects with deeper defects benefiting from additional treatment measures. [79-80] For improved esthetic outcomes in mild to moderate cases of MIH, the enamel microabrasion technique maybe combined with dental bleaching. [79, 81].

3.3.3 Deproteinization

Application of a 5% sodium hypochlorite solution following acid conditioning has been found to be ideal for deproteinization. Bond strength can be achieved after deproteinization without removal of the defected enamel surfaces. However, further research is required to evaluate the clinical effectiveness of this technique. [72, 75, 82].

3.3.4 Full coverage

Stainless steel crowns are ideal interim solution in younger patients who experience severe form of hypomineralized molars to protect the remaining tooth structure from early breakdown, relief hypersensitivity and establish plaque-free interproximal and occlusal contacts. In case of
crown cementation in incomplete tooth eruption, glass-ionomer cement is the ideal material to be considered. [83-85]

3.4 Other Measures

3.4.1 Extraction and orthodontics

Extraction of a first permanent molars (FPM) is not ideal functionally nor is it an orthodontist’s first choice for malocclusion correction. However, in case of poor long-term prognosis, best age to perform extraction of these teeth is usually before the age of 8.5-9 years. Radiographically, once the mandibular permanent second molar shows signs of calcification of bifurcation then extraction option should be considered. This will encourage forward movement of permanent second molars into a good alignment. If the mandibular FPM is extracted, then maxillary FPM should be considered as a compensation. [78, 86-87]

4. CONCLUSION

MIH is considered a significant dental public health concern globally. Early diagnosis by all clinicians involved in oral health management of children facilitates optimal treatment implementation as well as improved quality of life of affected children and their families. The esthetics of MIH is the most challenging aspect of its management and treatment should be tailored to address the needs of the child, to prevent loss of further tooth structure and caries development for as long as possible. This entails combining treatment as an aesthetic and functional rehabilitation and to treat dental hypersensitivity where required. Therefore, importance of both short and long-term approaches to treatment planning with regular dental visits needs to be communicated to the parents for optimal clinical management and improved prognosis of MIH in affected children.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

66. Da Cunha Coelho ASE, Mata PCM, Lino CA, Macho VMP, Areias C, Norton A, Augusto A. Dental hypomineralization

84. Fayle SA. Molar incisor hypomineralisation: restorative

© 2021 Alamoudi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle4.com/review-history/75299