A Comprehensive Study of Medicinal Plants with Antidiabetic Properties

Faruk Alam¹, Ruhul Amin¹, Mohidul Islam², Republica Borgohain¹, Moidul Islam Judder³ and Aswini Kumar Sethi⁴

¹Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam, India.
²Assam down town University, Panikhaiti, Guwahati, Assam, India.
³Crescent Institute of Pharmacy, Milanjyoti Path, Hatigaon, Guwahati, Assam, India.
⁴Jeypore College of Pharmacy, Jeypore, Koraput, Odisha, India.

Authors’ contributions
This work was carried out in collaboration among all authors. Authors FA and RA designed the study, download articles, and wrote the first draft of the manuscript. Authors MI and RB managed the analyses of the study. Authors MIJ and AKS managed the literature searches and update the manuscript. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JPRI/2021/v33i33B3179
Editor(s):
(1) Dr. Sawadogo Wamtinga Richard, Ministry of higher education, scientific research and innovation, Burkina Faso.
(2) A Sanjevea Kumar, Orotta College of Medicine and Health Sciences (OCMHS), Eritrea.
(3) Kamran Ashraf, Universiti Teknologi MARA, Malaysia.
Complete Peer review History: http://www.sdiarticle4.com/review-history/67033

ABSTRACT
The purpose of this research is to assess the anti-diabetic effects of several medicinal herbs. Herbal medicine has grown in popularity in both developing and developed countries over the last several years, owing to its natural origins and lack of negative effects. Even though medicinal plants have been utilized to treat diabetes mellitus from ancient times, they have been offered as abundant but untapped prospective sources for anti-diabetic medicines. It's a reality that diabetes can't be cured, and no one has ever claimed to be completely free of the disease. Diabetes mellitus is becoming a severe hazard to human health in all regions of the world due to its fast growing occurrence. Furthermore, several novel bioactive compounds derived from plants have demonstrated antidiabetic action with greater efficacy than oral hypoglycemic medicines already utilized in clinical therapy in recent years. Despite the fact that many plants are recommended, further pharmacological and chemical study is needed to fully understand the mechanism of hypoglycemic action.

*Corresponding author: E-mail: ruhulg1p18@gmail.com;
1. INTRODUCTION

Medicinal plants are still used to treat human illnesses. Over the previous 2500 years, highly powerful traditional medical systems such as Chinese, Ayurvedic, and Unani have emerged and flourished, mostly on the eastern continent [1]. Herbal treatments are gaining popularity on a global scale due to their perceived safety. Traditional traditions are still alive and well, since almost 80% of people in underdeveloped nations depend on these medical systems for their main health care [1-2]. These plants contain compounds that may be employed as therapeutics and as drug precursors. Medicinal herbs have been studied extensively, and it has been revealed that they have different effects on the nervous, circulatory, respiratory, digestive, and urinary systems, as well as the sexual organs, skin, vision, hearing, and taste. Natural products, particularly those of plant origin, are the major focus for discovering promising lead candidates, and they will play an important role in future drug development efforts [2-4]. Plant-based preparations are the major essential player of all current medicines, particularly in rural regions, because of their ease of availability, cheap cost, and minimal adverse effects [5]. Furthermore, many plants have a wealth of bioactive compounds with little adverse effects and potent pharmacological benefits [6-8]. Many of the presently known medications are derived directly or indirectly from plants [9-12]. Many Indian medicinal plants have been demonstrated to help in diabetes therapy. The fact that therapeutic plants are readily available and have few side effects is one of their most enticing features. Plants have long been a good source of pharmaceuticals, and many of the ones on the market today are derived from them, either directly or indirectly. Diabetes is treated in Unani medicine using a variety of plant-based preparations. Diabetes is a kind of diabetes that affects people of all ages. Diabetes mellitus is described as a metabolic illness with numerous etiologies characterized by persistent hyperglycemia and changes in carbohydrate, lipid, and protein metabolism caused by abnormalities in insulin production, insulin action, or both, according to the World Health Organization. Long-term damage, malfunction, and failure of multiple organs are all side consequences of diabetes mellitus. Thirst, polyuria, impaired eyesight, and weight loss are all common signs of diabetes mellitus [13].

2. TYPES OF DIABETES MELLITUS (DM)

- Insulin Dependent Diabetes Mellitus (IDDM, Type-I)
- Non-Insulin Dependent Diabetes Mellitus (NIDDM Type-II)
- Gestational diabetes (Type-III)

Type I diabetes, often known as juvenile diabetes, is an insulin-dependent condition that affects only around 5% of diabetics. Adults over the age of 40 are more likely to acquire Type II diabetes, which is non-insulin dependent. Chronic hyperglycemia caused by diabetes has been linked to long-term damage, malfunction, and finally organ failure, particularly in the eyes, kidneys, nerves, heart, and blood vessels [14].

3. TREATMENT OF DIABETES MELLITUS

3.1 Insulin and Oral Hypoglycemic Drugs

Insulin treatment should strive to imitate nature's achievement in minimizing postprandial hyperglycemia and avoiding hypoglycemia between meals. Human insulin, cow insulin, and pig insulin are among the insulin formulations available. Insulin treatment is not without its drawbacks and side effects. When an incorrect dosage of insulin is used and there is a mismatch between meals and insulin injection, the most serious side effects include weight gain and hypoglycemia. They bind to sulfonylurea receptors on the plasma membrane of the β-cell, causing ATP-sensitive potassium channels to close and the cell membrane to depolarize. Sulfonylureas enhance insulin secretion from the pancreas and may also raise insulin levels by reducing hepatic clearance of hormones in type II diabetes patients. When taken orally rather than intravenously, it has been demonstrated to boost peripheral glucose absorption and lower hepatic glucose production by 20-30%. Impaired glucose absorption from the intestine has also been proposed as a mechanism of action [14,15].

3.2 Herbal Treatment of Diabetes

This condition requires medical diagnosis, treatment, and lifestyle adjustments. It is anticipated to become one of the world's most powerful disablers and killers within the next 25
years. Diabetes management has been a worldwide issue until now, and a suitable cure has yet to be developed. Many synthetic treatments have been produced for patients, but no one has ever been known to have completely recovered from diabetes [15]. Modern oral hypoglycemic medications have a number of unfavorable side effects. As a result, alternative treatment is necessary; a pressing necessity of the hour is to turn to various indigenous plant and herbal compositions [16]. Traditional remedies have a promising future in the treatment of diabetes, and the goal of this study is to compile all relevant data on plants with anti-diabetic activity that have been published in pharmaceutical publications. WHO has a list of 21,000 plants that are utilized for medical reasons all around the world. India has 2500 species, with 150 of them being utilized economically on a considerable basis. India is the world’s greatest producer of medicinal plants and is known as the world’s botanical garden [14].

4. SCREENING MODELS FOR ANTIDIABETIC ACTIVITY

4.1 Diabetes Induced Animal Model

4.1.1 Alloxan

Alloxan’s diabetogenic effect is mediated by reactive oxygen species. With the generation of superoxide radicals, alloxan and its reduction product, dialuric acid, create a redox cycle. Dismutation of these radicals to hydrogen peroxide occurs. The fenton reaction produces extremely reactive hydroxyl radicals after that. The fast death of (beta) cells is caused by reactive oxygen species combined with huge elevations in cytosolic calcium concentration. The fast absorption of alloxan by (beta) cells precedes its activity in the pancreas [17].

4.1.2 Streptozotocin

Streptomyces achromogenes produce streptozotocin, 2-deoxy-2-[methyl-3-nitrosoureid]-d-glucopyranose, which is used to cause type I and type II diabetes. In practically all species, streptozotocin causes diabetes. The best dosage to induce diabetes in rats was determined to be 50-60 mg/kg i.p. or i.v., in mice 175-200 mg/kg i.p. or i.v., and in dogs 15 mg/kg for 3 days. Rapid intravenous injection seems to be the optimum mode of delivery due to its poor solubility [18].

4.1.3 Ferric nitrilotriacetate induction of diabetes mellitus

This is a method that is seldom utilized. Diabetic symptoms such as hyperglycemia were seen in rats and rabbits given a significant daily dosage of ferric nitrilotriacetate. After around 60 days of therapy, patients with glycosuria, ketonemia, and ketourea had a poor blood insulin response to oral glucose loading [18].

4.1.4 Non insulin dependent diabetes mellitus (NIDDM) resembling animal models

The neonatal STZ-induced rat model of type II diabetes mellitus is established by injecting Wister rats intravenously [18] or intraperitoneal with 100mg/kg of STZ on the day of their birth.

4.1.5 Hormone induced diabetes

Growth hormone induced diabetes; in intact adult dogs and cats, repeated administration of growth hormone causes an intensively diabetic condition with all symptoms of diabetes, including severe ketonemia and ketonuria; corticosteroid induced diabetes: hyperglycemia and glycosuria are seen in forced fed rats treated with cortisone; experimental corticoid diabetes in guinea pigs and rabbits.

4.1.6 Insulin deficiency due to insulin antibodies

Bovine insulin [1 mg] is administered subcutaneously into guinea pigs on a monthly basis, and the animals are bled by heart puncture two weeks after the second and subsequent antigen doses. Intravenously injecting guinea pig anti insulin serum (0.25-1.0ml) into rats causes an aldose of dependant rise in blood glucose. This result is caused to insulin antibodies generated by the injected animal neutralizing the impact.

4.1.7 Virus induced diabetes

Virus infection and -cell specific autoimmunity may cause type 1 diabetes. In male ICR Swiss mice, the d-variant of the Encephala Mocarditis Virus [EMC-D] preferentially infects and kills the -cells (beta), comparable to human insulin-dependent diabetics.

4.1.8 Genetically diabetic animals

Several animal species, particularly rodents, have been documented as having hereditary
diabetes mellitus, such as spontaneously diabetic rats like the BB rat, WBN/KOB rat, and others [18].

4.1.9 Models of diabetes accelerated atherosclerosis

In diabetes individuals, accelerated cardiovascular disease is the major cause of morbidity and death. Because the risk of myocardial infarction (MI) is the same in diabetes and non-diabetic individuals with prior MI, aggressive dyslipidemia treatment is required (MI). The most extensively utilized models for studying diabetes and atherosclerosis are now rats and mice.

4.1.10 Genetic models of diabetes

a. Spontaneously develop diabetic rats

These models allow for the study of a natural product's impact on an animal without the interference of the adverse effects caused by chemical medications like as alloxan and STZ, as described above. The spontaneously diabetic Gotokakizakhi rat, which is a genetic model of type-II diabetes derived via selective breeding of glucose-intolerant non diabetic wister rats over many generations, has been described in many recent articles [19].

b. Genetically engineered diabetic mice

In this case, rodents may be bred to over- or under-express proteins thought to be important in glucose metabolism. Despite significant advances in this field in recent years, particularly with the introduction of transgenic mice, no studies involving natural products have been conducted on these models [18].

5. ANTIDIABETIC DRUGS AND THEIR SIDE EFFECTS

Sulfonylureas, biguanides, -glucosidase inhibitors, thiazolidinedione's, and non-sulfonylurea secretagogues are some of the oral hypoglycemic medications that have antidiabetic actions via distinct mechanisms. Glimepiride and glyburide, for example, are oral sulfonylureas that lower blood sugar by increasing insulin release from the islets of Langerhans. This is accomplished by binding to the sulfonylurea receptor on -cells (beta), which causes the closure of adenosine triphosphate-dependent potassium channels. As a consequence, the cell membrane depolarizes, allowing calcium to influx and stored insulin to be secreted from secretory granules inside the cells. This process only functions when insulin is present [19,20]. The biguanides are another kind of oral hypoglycemic medication that works by increasing insulin-stimulated absorption and utilization of sugar to diminish hepatic gluconeogenesis and restore insulin sensitivity in peripheral tissues. Despite this, biguanides are effective in the absence of insulin. Metformin is the greatest example of this class. Acarbose and miglitol are -glucosidase (alpha) inhibitors that prevent particular enzymes in the small intestine from breaking down carbs. Hypoglycemic drugs in this class work by slowing the absorption of carbs in the body. Acarbose also inhibits both pancreatic -amylase and -glucosidase (alpha) enzymes reversibly by binding to the carbohydrate-binding area and interfering with their breakdown into monosaccharides, resulting in delayed absorption and lower postprandial blood sugar levels.

The thiazolidinedione's (TZDs), such as pioglitazone and rosiglitazone, are another major family of oral hypoglycemic medicines, with a mechanism of action that predominantly involves enhancing muscle and adipose tissue sensitivity to insulin and, to a lesser degree, lowering hepatic glucose production. The nuclear peroxisome proliferator-activated receptor gamma (PPAR) is found in the liver, skeletal muscle, and adipose tissue, and TZDs are powerful and selective agonists. The transcription of insulin-responsive genes involved in the regulation of transportation, manufacturing, and glucose consumption is controlled by the activation of PPAR receptors. TZDs have also been shown to improve -cell function by reducing free fatty acid levels, which eventually leads to -cell death [20].

The non-sulfonylurea secretagogues, such as meglitinide and repaglinide, promote insulin secretion from active cells (beta) in a similar fashion as sulfonylureas. This family of oral antidiabetic drugs, on the other hand, binds to a variety of -cell receptors [21]. Although synthetic oral hypoglycemic medications and insulin are the most common methods for treating diabetes, they do not totally cure the disease's problems and, in addition, they have significant adverse effects. This is the driving factor behind the search for new anti-diabetic medicines [22].
Fig. 1. α-Amylase inhibitors are reported in several plants, as follows with corresponding IC50 values in µg/ml

- Catharanthus roseus (Apocynaceae) [50]
- Aegle marmelos (Rutaceae) [52]
- Linum usitatissimimum (Linaceae) [33]
- Santolium spicatum (Santalaceae) [34]
- Acacia ligulate (Fabaceae) [34]
- Marrubium radiatum (Lamiaceae) [85]
- Paronychia argentea (Caryophyllaceae) [56]
- Costus pictus (Costaceae) [39]
- Eugenia polyantha (Myrtaceae) [42]
- Camellia sinensis (Theaceae) [43]
- Rhizoma fagopyri (Polygonaceae) [81]
- Eugenia cuminii (Myrtaceae) [52]
- Morus alba (Moraceae) [33]
- Beyeria leshnaultii (Euphorbiaceae) [34]
- Pterocarpus marsupium (Fabaceae) [34]
- Salvia acutabulosa (Lamiaceae) [85]
- Moringa stenopetala (Moringaceae) [57]
- Juniperus oxycedrus (Cupressaceae) [40]
- Ludwigia octovalvis (Onagraceae) [43]
- Areca catechu (Arelicaeae) [44]
- Terminalia arjuna (Combretaceae) [82]
- Ocimum tenuiflorum (Lamiaceae) [33]
- Pterocarpus marsupium (Legumes) [34]
- Mucuna pruriens (Fabaceae) [34]
- Boerhavia diffusa (Nyctaginaceae) [34]
- Aloe vera (Asphodelaceae) [86]
- Nelumbo nucifera (Nelumbonaceae) [38]
- Fagonia cretica (Zygophyllaceae) [41]
- Inostophane heterophylla (Asteraceae) [43]
- Cinnamomum zeylanicum (Laurels) [45]
Table 1. Analysis of remedies obtained from different plant parts for diabetes mellitus [30-45].

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Family</th>
<th>Parts used</th>
<th>Solvent(s)</th>
<th>Active chemical constituents</th>
<th>Animal model</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamarindus indica</td>
<td>Fabaceae</td>
<td>Seed, Fruit</td>
<td>CH$_3$OH</td>
<td>Flavonoid, Polysaccharide</td>
<td>STZ-rat</td>
<td>↓Cholesterol, Triglycerides [46]</td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>Rutaceae</td>
<td>Leaf, Seed, Fruit</td>
<td>C$_2$H$_5$OH, H$_2$O</td>
<td>Aegeline-2, Coumarin, Flavonoid, Alkaloid</td>
<td>STZ-rat</td>
<td>↓Glucose, ↓Glycosylated Hemoglobin, ↑Cpeptide, ↑Glucose Tolerance, ↑Glycogen [47,48]</td>
</tr>
<tr>
<td>Murrayakoenigii</td>
<td>Rutaceae</td>
<td>Leaf, Fruit</td>
<td>Fruit juice</td>
<td>Carbazole, Alkaloid</td>
<td>ALX-mice</td>
<td>↑Glycogen synthetase, ↓Glycogenolysis, ↓Glycogen phosphorylase, ↓Glucanogenic enzymes [49]</td>
</tr>
<tr>
<td>Allium sativum</td>
<td>Alliaceae</td>
<td>Root</td>
<td>C$_2$H$_5$OH</td>
<td>Diallyldisulphide oxide, Ajoene, Ally propyl disulfide, S-allyl cysteine, S-allyl mercaptocysteine</td>
<td>STZ-rat</td>
<td>↓Glucose, ↓Lipid, ↑Insulin, ↓Oxidative stress[50]</td>
</tr>
<tr>
<td>Lyciumbarbarum</td>
<td>Solanaceae</td>
<td>Fruit</td>
<td>POLY</td>
<td>Polysaccharide</td>
<td>STZ-rat, ALX-rabbit</td>
<td>↓Glucose, ↓Oxidative stress, ↑GLUT4, ↑Insulin [51]</td>
</tr>
<tr>
<td>Psidium guajava</td>
<td>Myrtaceae</td>
<td>Leaf, Fruit</td>
<td>H$_2$O, CH$_3$OH</td>
<td>Terpen, Flavonoid, Strictinin, Isostrictinin, Pedunculagin, Polysaccharide</td>
<td>STZ-rat</td>
<td>↓Glucose[52]</td>
</tr>
<tr>
<td>Momordica charantia</td>
<td>Cucurbitaceae</td>
<td>Whole plant</td>
<td>CH$_3$OH, H$_2$O, CHCl$_3$</td>
<td>Charantin, Momordicin, Galactosebinding lectin Nonbitter, Diosgenin, Cholesterol, Lanosterol, Cucurbitacin glycoside, β-sitosterol</td>
<td>SZT-mice</td>
<td>↓Glucose, ↓Glycosylated hemoglobin, ↓Oxidative stress, ↓Lipid peroxidation, ↑Glycogen [53,54]</td>
</tr>
<tr>
<td>Momordica cymbalaria</td>
<td>Cucurbitaceae</td>
<td>Fruit</td>
<td>H$_2$O</td>
<td>Steroidal glycoside or phenolics</td>
<td>ALX-rat</td>
<td>↓Glucose, ↓Cholesterol, ↓Triglycerides [55]</td>
</tr>
<tr>
<td>Momordica balsamina</td>
<td>Cucurbitaceae</td>
<td>Fruit</td>
<td>CH$_3$OH</td>
<td>Momordicin, Vitamin C, Resin acid, Fixed oil, Carotene,</td>
<td>STZ-rat</td>
<td>Antidiabetic [56]</td>
</tr>
<tr>
<td>Botanical name</td>
<td>Family</td>
<td>Parts used</td>
<td>Solvent(s)</td>
<td>Active chemical constituents</td>
<td>Animal model</td>
<td>Result</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Phyllanthus emblica</td>
<td>Euphorbiaceae</td>
<td>Fruit</td>
<td>H₂O</td>
<td>Aromatic volatile oil, Alkaloid, Saponin, Cucurbitacin, Tannin</td>
<td>ALX-rat</td>
<td>Antidiabetic [57]</td>
</tr>
<tr>
<td>Rhus coriaria</td>
<td>Anacardiaceae</td>
<td>Fruit</td>
<td>C₂H₅OH</td>
<td>Limonene, Nonanal, Dec-2 (Z)-enol</td>
<td>ALX-rat</td>
<td>Antidiabetic [58]</td>
</tr>
<tr>
<td>Musa paradisiaca</td>
<td>Musaceae</td>
<td>Fruit</td>
<td>CH₃OH</td>
<td>Dietary fibre, Pectin</td>
<td>STZ-rat</td>
<td>Antidiabetic [59]</td>
</tr>
<tr>
<td>Aloe vera</td>
<td>Liliaceae</td>
<td>Leaf</td>
<td>C₂H₅OH</td>
<td>Pseudoprototinosaponin, Prototinosaponin</td>
<td>STZ-mice</td>
<td>↓ Glucose, ↓TG, ↓LDL, and ↓TC and upregulated GLUT-4 mRNA synthesis in NIH/3T3 cells [60,61]</td>
</tr>
<tr>
<td>Eugenia jambolana</td>
<td>Asteraceae</td>
<td>Fruit pulp, Seed</td>
<td>H₂O, C₂H₅OH</td>
<td>Pandanus odorus</td>
<td>STZ-rabbit, STZ-mice</td>
<td>↓Hepatic glucose-6-phosphatase activity, Glucokinase activity [62,63]</td>
</tr>
<tr>
<td>Terminalia chebula</td>
<td>Combretaceae</td>
<td>Seed, Fruit</td>
<td>CHCl₃, H₂O</td>
<td>Shikimic, Gallic, Triacontanoic, Palmitic acid, β-sitosterol, Daucosterol</td>
<td>STZ-rat</td>
<td>↓Glucose [64]</td>
</tr>
<tr>
<td>Ziziphus spinachristi</td>
<td>Rhamnaceae</td>
<td>Leaf</td>
<td>N-but</td>
<td>Christinin-A, Fatty acid</td>
<td>STZ-rat, ALX-dog</td>
<td>↓Glucose [65]</td>
</tr>
<tr>
<td>Thespesia populnea</td>
<td>Malvaceae</td>
<td>Fruit</td>
<td>C₂H₅OH</td>
<td>Populnetin, Herbacetin, Popunol, Quercetin</td>
<td>ALX-rat</td>
<td>Antihyperglycemic, Hypoglycemic activity [66]</td>
</tr>
<tr>
<td>Diospyros lotus</td>
<td>Ebenaceae</td>
<td>Fruit</td>
<td>H₂O</td>
<td>Phenolics</td>
<td>STZ-rat</td>
<td>Antidiabetic [67]</td>
</tr>
<tr>
<td>Helicterisosa</td>
<td>Sterculiaceae</td>
<td>Fruit</td>
<td>H₂O</td>
<td>Steroid, Terpenoid, Alkaloid, Carbohydrate, Phenolics</td>
<td>STZ-rat</td>
<td>Insulin-sensitizing, Hypolipidemic activity [68,69]</td>
</tr>
<tr>
<td>Punica granatum</td>
<td>Punicaceae</td>
<td>Fruit</td>
<td>C₂H₅OH</td>
<td>Tannin</td>
<td>ALX-mice</td>
<td>Antidiabetic [70,71]</td>
</tr>
<tr>
<td>Panax ginseng</td>
<td>Araliaceae</td>
<td>Fruit</td>
<td>Berry extract</td>
<td>Saponin</td>
<td>Glucose tolerance -mice</td>
<td>Antidiabetic [72]</td>
</tr>
<tr>
<td>Anacardium occidentale</td>
<td>Anacardiaceae</td>
<td>Leaf</td>
<td>H₂O, C₂H₅OH</td>
<td>Anacardicacid, Cardanol, Cardol, 2-methyl cardol</td>
<td>STZ-rat</td>
<td>Anti-hyperglycemic, Renal protective activities [73]</td>
</tr>
<tr>
<td>Annona squamosa</td>
<td>Annonaceae</td>
<td>Seeds, Leaf, Aerial parts</td>
<td>H₂O, C₂H₅OH</td>
<td>Anonaine, Lirodenine, Benzylosiquinoline, Bullatacin</td>
<td>STZ-rat</td>
<td>↑Insulin, ↑utilization of glucose and ↓glucose</td>
</tr>
<tr>
<td>Botanical name</td>
<td>Family</td>
<td>Parts used</td>
<td>Solvent(s)</td>
<td>Active chemical constituents</td>
<td>Animal model</td>
<td>Result</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Annona muricata</td>
<td>Annonaceae</td>
<td>Leaf</td>
<td>H₂O</td>
<td>Linalool, α -terpineol, Linalyl propionate, Calarene</td>
<td>STZ-rat</td>
<td>↑ Insulin immunoreactive β-cells and prevents degeneration of β-cells[75]</td>
</tr>
<tr>
<td>Boerhaaviadiffusa</td>
<td>Nyctaginaceae</td>
<td>Leaf</td>
<td>H₂O</td>
<td>Liriodendrin, Eupalitin</td>
<td>ALX-rat</td>
<td>↓ Blood glucose level, ↑ Insulin sensitivity [76]</td>
</tr>
<tr>
<td>Bougainvillea spectabilis</td>
<td>Nyctaginaceae</td>
<td>Leaf, stem bark</td>
<td>C₂H₅OH</td>
<td>Terpinolene, α-(E)-ionone, Methyl salicylate</td>
<td>ALX-rat</td>
<td>↑ Uptake of glucose by enhanced glycogenesis in the liver, ↑ Insulin sensitivity [77].</td>
</tr>
<tr>
<td>Butea monosperma</td>
<td>Papilionaceae</td>
<td>Fruit</td>
<td>H₂O</td>
<td>Butein, Palasonin, Stigmasterol-3 β-D-glucopyranosid</td>
<td>Type II diabetic patient</td>
<td>Antidiabetic [78]</td>
</tr>
<tr>
<td>Brideliandellensis</td>
<td>Euphorbiaceae</td>
<td>Stem Bark</td>
<td>C₂H₅OH</td>
<td>2-O-β-D glucosylglycerol</td>
<td>STZ-rat</td>
<td>↓ Blood glucose level, Stimulation of islets cells [79]</td>
</tr>
<tr>
<td>Canavaliaensiformis</td>
<td>Leguminosae</td>
<td>Seeds</td>
<td>H₂O</td>
<td>Proteins</td>
<td>ALX-rat</td>
<td>↓ Blood glucose levels, ↑ Triacylglycerol, ↑ Cholesterol [80,81]</td>
</tr>
<tr>
<td>Cocciniaindica</td>
<td>Cucurbitaceae</td>
<td>Whole plant</td>
<td>C₂H₅OH</td>
<td>Pectin, Toluene</td>
<td>ALX-rat</td>
<td>↓ Blood glucose [82]</td>
</tr>
<tr>
<td>Cocculushirsutus</td>
<td>Menispermacae</td>
<td>Leaf</td>
<td>H₂O</td>
<td>β-sitosterol, Ginnol, 28-acetyl betulin</td>
<td>Alloxan-mice</td>
<td>↓ Serum glucose level, ↓ Glucose tolerance [83]</td>
</tr>
<tr>
<td>Ficus hispida</td>
<td>Moraceae</td>
<td>Leaf, Bark</td>
<td>CHCl₃, C₂H₅OH</td>
<td>Ficustiol, O-methyl tylophorinidine</td>
<td>ALX-rat</td>
<td>↓ Fasting blood glucose [84]</td>
</tr>
<tr>
<td>Mangiferaindica</td>
<td>Anacardiaceae</td>
<td>Leaf, Stem, Bark, Fruit</td>
<td>H₂O, C₂H₅OH</td>
<td>Mangiferin, Phenolics, Flavonoid</td>
<td>STZ-rat, Alloxan-rat</td>
<td>↓ α-amylase [85]</td>
</tr>
<tr>
<td>Citrus reticulate</td>
<td>Rutaceae</td>
<td>Fruit</td>
<td>Essential oil</td>
<td>Essential oil</td>
<td>ALX-rat</td>
<td>↓ Blood cholesterol levels [86]</td>
</tr>
<tr>
<td>Feronia elephantum</td>
<td>Rutaceae</td>
<td>Fruit</td>
<td>H₂O</td>
<td>Bioflavonoid, Bergapten, Triterpenoid, Stigma sterol,</td>
<td>ALX-rat</td>
<td>↓ Blood glucose level [87]</td>
</tr>
<tr>
<td>Limonia acidissima</td>
<td>Rutaceae</td>
<td>Fruit</td>
<td>CH₃OH</td>
<td>Polysaccharide</td>
<td>ALX-rat</td>
<td>↓ Glucose level, ↓ Blood urea, ↑ Total protein level [8]</td>
</tr>
<tr>
<td>Withania coagulans</td>
<td>Solanaceae</td>
<td>Fruit</td>
<td>C₂H₅OH</td>
<td>Milk-coagulating enzyme,</td>
<td>T2DM rats</td>
<td>↓ Elevated levels of blood</td>
</tr>
<tr>
<td>Botanical name</td>
<td>Family</td>
<td>Parts used</td>
<td>Solvent(s)</td>
<td>Active chemical constituents</td>
<td>Animal model</td>
<td>Result</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Coccinia indica</td>
<td>Cucurbitaceae</td>
<td>Fruit</td>
<td>C_2H_5OH</td>
<td>B-amyrin, Lupeol, Cucurbitacin-B</td>
<td>ALX-rat</td>
<td>decreasing the blood glucose level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↓HbA1c, ↓Insulin [89,90]</td>
</tr>
<tr>
<td>Cucumis metuliferus</td>
<td>Cucurbitaceae</td>
<td>Fruit</td>
<td>Fruit extract</td>
<td>B-carotene, Fatty acid</td>
<td>ALX-rat</td>
<td>↓Blood glucose[91]</td>
</tr>
</tbody>
</table>

*ALX-Alloxan; STZ-Streptozotocin; CH_3OH-Methanol; C_2H_5OH-Ethanol; CHCl_3-Chloroform; POLY-Polysaccharide; N-but-N-butanol
Sulfonylureas, for example, are known to lose their electiveness in roughly 44 percent of patients after 6 years of therapy, whilst glucose-lowering medications are believed to be unable to manage hyperlipidemia [23]. The hunt for innovative antidiabetic medications from natural sources continues [24] because to many constraints connected with the usage of current synthetic antidiabetic medicines.

6. MEDICINAL PLANTS AS AN ALTERNATIVE SOURCE OF ANTI-DIABETIC AGENTS

Insulin and several oral hypoglycemic medications such as sulfonylureas, metformin, glucosidase inhibitors, troglitazone, and others are now available for diabetic treatment. However, significant side effects such as liver issues, lactic acidosis, and diarrhea have been recorded [25]. It presently affects roughly 143 million people [26], and the number of individuals impacted is growing every day; by 2030, it is expected to impact 366 million people globally [27]. There are around 800 plant species that have been documented to have anti-diabetic effects. Native Americans, Chinese, South Americans, and Asian Indians have all employed various plant species to prevent or control diabetes [26]. According to the research, the Asian and African continents account for 56 percent and 17 percent of global distribution of medicinal herbal plants, respectively [28].

Plants that are potent in phenolic, alkaloids, flavonoids, terpenoids, coumarins, and glycosides have beneficial biological benefits. Many classic diabetes treatments, like as metformin, are secretagogues derived from plants, on the other hand. Traditional diabetes drugs work by improving insulin sensitivity, increasing insulin production, and lowering blood glucose levels. Many medicinal plants have been discovered as potential sources of antidiabetic principles, which are widely used for the treatment of diabetes mellitus in many traditional medical systems across the world, and many of them have been shown to be effective against diabetes. The hypoglycemic action of the plant’s pharmacologically active component reduces the impact of amylase and numerous direct and indirect impacts of various blood parameters that contribute to diabetes development. Fig. 1 shows the IC50 values for -amylase (alpha) inhibitors in different plants, with the matching IC50 values in g/ml in parenthesis. There are several anti-diabetic medications available on the market for diabetes and associated complications; however, there is presently no effective treatment available to cure the illness. However, the efficacies of these compounds are questionable owing to undesired side effects, and there is a desire for novel compounds for the treatment of diabetes. Due to its natural origin and fewer side effects, there has been an increasing interest in herbal therapy in the treatment and control of diabetes in both developing and developed nations in recent years [29].

This review article attempts to compile the reported hypoglycemic plants published in various scientific journals, which may be useful to health professionals, scientists, and scholars working in the field of pharmacology and therapeutics in developing evidence-based alternative medicine to treat various types of diabetes in humans and animals. Table 1: shows an analysis of diabetic mellitus therapies derived from various plant sections.

7. DISCUSSION

Diabetes mellitus is expanding at an alarming rate around the globe, affecting three-quarters of the global population, and is regarded as a significant source of substantial economic loss, which might stymie nation-building. Furthermore, untreated diabetes causes a slew of long-term problems, including blindness, heart disease, and renal failure, to name a few. As a result, treatments based on the principles of western medicine (allopathic) are often ineffective, carry the danger of side effects, and are prohibitively expensive, particularly in poor countries. As a result, treating diabetes mellitus using plant-derived chemicals that are readily available and do not need time-consuming pharmaceutical production seems to be very appealing. According to the findings, 85 plant species from 43 families are often used to treat diabetes. The bulk of the studies found that medicinal herbs with hypoglycemic properties are beneficial in the treatment of diabetes mellitus [30]. The comprehensive natural plants are not only used to cure diabetes, but also to cure a variety of other conditions. Other plant components (leaf, root, stem, bark, flower, and whole plant) were also effective for curing. The most often utilized diabetes model was the streptozotocin and alloxan-induced diabetic mouse or rat. In this study, the STZ rat was the most often used animal model. In diverse situations, alloxan mice, glucose tolerance mice, KK-Ay diabetic mice,
and diabetic individuals were used as models [31]. Hereditary diabetic mice, such as the KK-Ay mice, have been utilized as a model of type II diabetes with hyperinsulinemia by certain researchers [32]. Flavonoid, Tannin, Phenolic, and Alkaloid are the most typically engaged active ingredients. For these plant extracts, a variety of mechanisms of action have been postulated. Some possibilities center on their impact on pancreatic cell activity (synthesis, release), as well as the increase in insulin sensitivity or insulin-like activity of plant extracts. All of these strategies may have a role in reducing or eliminating diabetes complications.

8. CONCLUSION

Diabetes mellitus is a sickness defined by a loss of glucose homeostasis due to insulin production and insulin action abnormalities, both of which result in impaired glucose and other energy-yielding fuels such as lipids and proteins metabolism. Many nations are now seeing significant rises in the number of diabetics. In 1985, the World Health Organization estimated that roughly 30 million individuals had diabetes; by 2000, that figure had risen to more than 171 million. By 2030, it is expected that the population would have risen to over 366 million, with considerable increases in emerging nations, particularly among those aged 45 to 64. Plant-based medications and herbal formulations are less toxic and have fewer negative effects than manufactured medications. Hypoglycemic drugs of plant origin used in medicine are significant, according to WHO guidelines. These plants' anti-hyperglycemic properties are linked to their capacity to restore pancreatic tissue function by increasing insulin secretion or decreasing glucose absorption in the intestine. As a result, herbal medication therapy protects cells while also smoothing out fluctuations in glucose levels. In general, there is limited scientific understanding about the precise mechanisms of action in the treatment of diabetes, although most plants have been shown to contain chemicals such as glycosides, alkaloids, terpenoids, flavonoids, and other anti-diabetic compounds. The hunt for alternative therapies (from the plant kingdom) for diabetes mellitus will continue all around the globe, since the condition presents several hurdles to both doctors and researchers.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENT

The authors of this paper would like to thank the management of Assam down town University and Crescent Institute of Pharmacy for providing all the facilities to carry out this research and supporting the research.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

27. Rajalakshmi M, Eliza J, Priya C.E, Nirmala A, Daisy P. Antidiabetic properties of Tinosporacordifolia stem extracts on
48. Ramirez G, Zavala M, Pérez J, Zamilpa A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase

69. Mohamed B, Ziyyat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with potential...

88. Anurag Mishra, Ganesh Prasad Garg. Antidiabetic activity of fruit pulp of Feronia

© 2021 Alam et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/67033