Effect of Methanolic Extract of Securigera securidaca as Antioxidant and Antibacterial Activities

Ghassab M. Al-Mazaideh¹* and Saleh A. Al-Quran²

¹Department of Chemistry and Chemical Technology, Faculty of Science, Tafila Technical University, P.O.Box 179, Tafila 66110, Jordan.
²Department of Biological Sciences, Faculty of Science, Mutah University, P.O.Box 7, Mutah 61710, Al-Karak, Jordan.

Authors’ contributions

This work was carried out in collaboration between both authors. Author GMA designed the study, carried out all experimental work and wrote the first draft of the manuscript. Author SAA managed the analyses of the study and managed the literature searches. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2020/v32i1130498

Editor(s): Dr. Vasudevan Mani, Qassim University, Saudi Arabia.
Reviewers:
(1) Dalia Mahmood, Al-Nahrain University, Iraq.
(2) Mukesh K. Berwal, ICAR-Central Institute for Arid Horticulture, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/58374

Received 20 April 2020
Accepted 27 June 2020
Published 06 July 2020

ABSTRACT

In the present work, the phytochemical screening, polyphenolic content, antibacterial activity and antioxidant activity of Securigera securidaca seeds in methanol were carried out. Phytochemical analysis of seeds showed the presence of alkaloids, flavonoids, saponins, terpenoids, steroids and glycosides. Total phenolic content was estimated by Folin Ciocalteau method and the result showed the highest phenolic content of 62.28 mg/g. Methanolic extract was screened for antibacterial activity by disc diffusion method and it found to be potent. The MIC of methanol extract identified by broth dilution method showed a MIC value of 0.25 mg/ml for both E. coli and Kl. Oxytoca, and also 0.5 mg/ml for both S. aureus and S. epidermis. The antioxidant effect of the seeds was tested by DPPH scavenging activity as in vitro assay. The extract had potent inhibitory activity (IC₅₀) value of 0.057 mg/ml. The finding experimental results showed that methanolic extract of Securigera securidaca is important as a source of antibacterial activity and polyphenolic antioxidants.

*Corresponding author: E-mail: gmazideh@itu.edu.jo, gsuadi2016@gmail.com;
1. INTRODUCTION

Medicinal plants have been known as green anticorrosion inhibitors [1-6], analgesics, antimicrobial, antioxidant, antispasmodics, and diuretics [7] since ancient times. Therefore, it becomes important starting material of drugs due to their content of secondary metabolites in plant. Currently, new antibacterial and antioxidant agents that have lesser side effects and better efficacy is promising approach in order to treat infectious diseases.

Securigera securidaca (S. securidaca) is an annual herb occurring wild in West Asia, Africa and Europe. Also called goat pea and popularly names as Gandeh Talkheh [8]. Several experimental studies have shown beneficial effects of S. securidaca seeds as natural promise agents for epilepsy in Iranian folk medicine [9], enhancing antidiabetic, chronotropic, treatment of disorders such as hyperlipidemia, hypoglycemic effects, diuretic, hypokalaemic activities [4] and as anti-HIV-1 activity [10]. Moreover, experimental studies showed its role in reducing the level of cholesterol and triglyceride in serum of high-fat fed rats [11,12]. It is reported that the ethanolic and aqueous extract of S. securidaca contains various classes of secondary metabolites such as steroids, flavonoids, alkaloids, tannins, cardenolides and penta cyclic triterpenoid type saponins [13,14]. Since these compounds may have the potential to inhibit Gram positive and negative bacteria and act as potent antioxidants, they have the ideal chemical structure for scavenging free radicals [15]. The petroleum ether extract of S. securidaca seeds showed antibacterial activities against Staphylococcus aureus (S.aureus) and Pseudomonas aeruginosa (P. aeruginosa) while the chloroform extract showed inhibitory effect only for S. aureus. The odd thing is, no antimicrobial activity of methanol extract, although there are many important natural compounds in the crude of S. securidaca seeds and there are many amino acids that have been determined in the composition of Securigera securidaca seeds such as Alanine, asparagine, arginine, aspartic acid, glutamic acid, valine and tyrosine [16,17].

Thus, this study (Fig. 1) aims to evaluate the effect of methanolic extract of S. securidaca seeds which will be published for the first time as antibacterial activity against Escherichia coli (E. coli), S. aureus (S. aureus), Staphylococcus epidermis (S.epidermis) and Klebsiella oxytoca (Kl.oxytoca), also antioxidant effects in order to use it in some infectious diseases.

Fig. 1. The overall work on methanolic extract of S. securidaca seeds
2. MATERIAL AND METHODS

2.1 Collection and Preparation of the Plant Materials

S. securidaca seeds brought from local herbal shop (Karak- Jordan) in the summer of 2017.

The seeds were grounded to be fine powder using a coffee blender and stored in the special container until use.

2.2 Preparation of Methanolic Extract

Twenty-five grams of seeds powder were soaked in 250 ml of 96% methanol and it was put in the shaker device at 150 rpm, in dark place for four days at room temperature and stored in a refrigerator for three days. The extract was then filtered using a Buchner funnel under vacuum. The filtrate was centrifuged at 3000 rpm for 15 minutes, and then extract concentrated in the rotary evaporator under vacuum at 50°C. The crude was left in open vials in the fume hood for four days at room temperature and stored thereafter at 4°C in a glass container until further use [18, 19].

2.3 Extraction Yield

The yield of crude methanol extract was calculated (% W1/W2) as:

\[
Yield = \frac{W_1}{W_2} \times 100\%
\]

Where \(W_1\) is the weight of dried and ground plant material after evaporation of methanol and \(W_2\) is the weight of powdered plant.

2.4 Qualitative Phytochemical Analysis

Phytochemical screening of primary and secondary metabolic compounds such as alkaloids, tannins, steroids, terpenoids, saponin glycosides, flavonoids, volatile oils, starch, phenols and proteins were conducted on seed extract according to standard phytochemical methods [20, 21].

2.5 Determination of Total Phenolic Content (TPC) in the Methanolic Crude

The Folin-Ciocalteau assay method [22] was used to determine the total soluble phenolic content in plant extract in terms of Gallic acid. In this experiment: plant extract (0.2 ml, three replicates); 1 ml of Folin-Ciocalteau reagent was introduced into test tubes; The mixtures were neutralized with 0.8 ml of 7.5 % of Na₂CO₃ and the final concentration of the plant extract in the solution was 500 μg/ml. The tubes were mixed and shaken well to allow for reaction and left for 30 minutes at room temperature for color development and the absorbance was measured at 760 nm using a spectrophotometer. TPC was calculated according to the standard calibration curve of Gallic acid (GA) solutions at different concentration (0 to 25 μg/ml). TPC was expressed as Gallic acid equivalents (GAE) in milligrams per gram plant extract [23].

2.6 Evaluation of Antibacterial Activity

2.6.1 Microorganism and growth conditions

The extraction was tested for antibacterial activity in vitro using both Gram negative and Gram positive bacteria (four microorganism including E. coli, S. aureus, S. epidermis and K. oxytoca). These stock cultures of bacteria were obtained from research Lab., Department of Biology, Mutah University. Antimicrobial activity evaluations were performed using the agar disc diffusion method [24, 25]. TPZ (10 μg) was employed as positive control, whereas a negative control contains pure methanol or distilled water. The plates were incubated at 37°C for 18 – 24 h. The antimicrobial activity of the extract was determined by measuring the diameter of inhibition zone (mm) against each bacterium. The tests were performed in triplicate and reported as mean ± standard deviation (SD).

2.6.2 Minimum inhibitory concentration (MIC)

Broth dilution method [26] was used to determine MIC. The extract dissolved in 10% DMSO in methanol was first diluted to the highest concentration (200 mg/ml) to be tested and then six-fold serial dilution was made in the concentration range of 0.0625 - 200 mg/ml. The extract solutions were added to a nutrient broth in separate test tubes inoculated with the respective standardized suspension of a strain adjusted to a concentration of 1x 10⁶ colony/ml. Each tube contains various extract at concentration of 0 (control), 0.0625, 0.125, 0.250, 0.500, 1 and 2 mg/ml in broth medium. These tubes were incubated at 37°C overnight and observed for visible growth (turbidity). MIC can be determined by examining broth tubes compared to control tube, containing only broth and inoculums without extract. Tubes that remain clear indicate no active growth and show the lowest concentration of extract, it was considered as MIC.
2.7 Evaluation of Antioxidant Activity of the Extracts

2.7.1 DPPH radical scavenging activity

The free radical scavenging activity of crude extract was estimated based on the previous reported procedure using the stable 2, 2-diphenyl-1-picrylhydrazyl radical, known as DPPH [27]. Briefly, different concentrations of the extracts were mixed with 5 ml of 0.004% methanol solution of DPPH (plant concentration in the solution varies from 0 to 2000 µg/mL). The mixture was shaken vigorously and left to stand for 30 min with incubation at 37°C. After that, the absorbance of the resulting mixture (DPPH with extract) was read against methanol at 517 nm using a spectrophotometer. All determinations were done at least in triplicate. The radical scavenging activity (capability to scavenge the DPPH radical) was calculated as a percentage of DPPH discoloration using the following equation:

\[
\text{Percentage of DPPH discoloration} = \left(\frac{A_c - A_s}{A_c}\right) \times 100 \, \%
\]

Where \(A_c \) is the absorbance of the control reaction (DPPH solution without the tested extract), and \(A_s \) is the sample absorbance of the presence of all of the extract samples and reagents. IC\(_{50}\) (crude concentration providing 50% inhibition) was determined by a graph plotting the percentage inhibition against crude concentration. Trolox equivalent per gram dry weight can be calculated by creating a standard curve of Trolox standards (concentration 0 to 1.5 µg/ml) versus their absorbance. This curve was used to be a standard for the construction of the calibration curve, and the percentage of DPPH discoloration was expressed as mg Trolox equivalents per gram of plant extract [28].

3.2 Total Phenolic Content

Folin Ciocalteu's method and the Gallic acid (GA) were used as standard compounds to find the total phenolic content (TPC). The TPC value of methanolic extract of S. securidaca seed was calculated using the standard curve equation of Gallic acid equivalent (GAE) in mg/g plant extract.

\[
Y = 0.0469X + 0.2703, \quad R^2 = 0.9601 \quad \text{Eq. (1)}
\]

Where \(Y \) is the absorbance at 760 nm and \(X \) is the amount of total phenolics in the plant extract. The TPC of the plant crude was 62.28 mg GAE/g of plant extract.

3.3 Antimicrobial Effects

Table 2 shows the antibacterial activity of methanolic extract of the plant against four bacterial strains including E. coli, S. aureus, S. epidermis and Kl. Oxytoca. The extraction has an inhibitory effect on the growth of bacterial strains in disc diffusion method and in agar well diffusion method with an inhibition zone from 4 mm to 13 mm diameters at different extract concentration (Fig. 2).

Table 3 summarizes the MIC results of plant extract on the different bacterial strains. The MIC values showed that negative Gram bacteria (E. coli and Kl. oxytoca) were inhibited at 0.25 mg/ml and the positive Gram bacteria (S. aureus and S. epidermis) were inhibited at 0.50 mg/ml. (MIC tests pictures in Supplementary data).
Table 2. Antibacterial activity of methanolic extract of S. securidaca seeds

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>Zone of inhibition (mm) / Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 mg/disc</td>
</tr>
<tr>
<td>E. coli</td>
<td>09 ± 1.1</td>
</tr>
<tr>
<td>S. aureus</td>
<td>13 ± 2.1</td>
</tr>
<tr>
<td>S. epidermis</td>
<td>13 ± 1.3</td>
</tr>
<tr>
<td>Kl. oxytoca</td>
<td>08 ± 1.2</td>
</tr>
</tbody>
</table>

Fig. 2. Antimicrobial activity of methanol extract of seeds of S. securidaca against four bacterial strains showing zone of inhibition, concentration: 2000, 1000 and 500 µg/ml, P= positive control (TPZ), N= negative control (water)

3.4 Antioxidant Activity

The DPPH radical scavenging activity of S. securidaca seeds methanol extract is shown in Fig. 3. This result has been evaluated using the DPPH radical method by reference standard (Trolox). The concentration spread of 1-100 µg/ml. The IC₅₀ value (half maximal inhibitory concentration) was 0.057 mg/ml for S. securidaca.

4. DISCUSSION

Recently, drug development and phyto-medicine are the hot topics in the world in order to find new and develop the known potential antioxidant and antibacterial. Plants are becoming more valuable in these topics because they are rich in several classes of secondary metabolites like alkaloids, polyphenols, terpenoids, steroids, glycosides and other natural products. These constituents showed an important value of herbal medicine in advances clinical research in infection diseases and improve health care [29]. The Folin-Ciocalteu's method has been used to find total phenol concentration presents in the extract. This method has been applied for finding polyphenols and other interfering compounds because of their antimicrobial and antioxidant activities. These compounds allow the extract to act as
metabolites such as flavonoids and cardiac seeds extract have several secondary phytochemical constituents with a percentage yield of 15.4% (Table 4). The presence of these compounds is thought to be responsible for antimicrobial and antioxidant activity.

Table 3. MIC of S. securidaca seeds methanolic extract (mg/ml)

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>MIC mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>0.25</td>
</tr>
<tr>
<td>S. aureus</td>
<td>0.50</td>
</tr>
<tr>
<td>S. epidermis</td>
<td>0.50</td>
</tr>
<tr>
<td>Kl. oxytoca</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 4. Antioxidant and total phenolic content and percentage yield

<table>
<thead>
<tr>
<th>Phytochemical tests</th>
<th>The seeds parts of S. securidaca methanolic extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant activity (IC50)</td>
<td>56.74 ± 1.2 µg/ml plant extract</td>
</tr>
<tr>
<td>Total phenolic contents</td>
<td>62.28 ± 1.7 mg/ml plant extract</td>
</tr>
<tr>
<td>Percentage yield %</td>
<td>15.4% plant extract</td>
</tr>
</tbody>
</table>

The phytochemical constituents of S. securidaca seeds extract have several secondary metabolites such as flavonoids and cardiac glycosides. Furthermore, S. securidaca extract has some flavonoids that act as potent cytotoxicity against HT-29 (colon carcinoma), T47D (breast ductal carcinoma) and Caco-2 (colorectal adenocarcinoma) which known as Human cancer cell line [33,34]. Meanwhile, the extract had potent antioxidant activity against DPPH with investigated IC50= 56.74 ± 1.2 µg/ml plant extract. Previous report [s16] showed that Petroleum ether and chloroform fraction of S. securidaca seeds have antimicrobial effects on the growth of S. aureus and P. aeruginosa (etheric extract) and only S. aureus has inhibited by chloroform extract. Moreover, methanolic extract has no microbial effect. This is the first report on methanol extract of S. securidaca seeds as antioxidant and antibacterial effects. Methanolic extract showed potent antibacterial activities against S. aureus and S. epidermis as Gram positive bacteria, also E. coli and Kl. Oxytoca as Gram negative bacteria with MICs 0.5, 0.5, 0.25 and 0.25 mg/ml, respectively. The extract work as a potent antimicrobial for both type of bacteria, but the inhibition zone diameter of extract against Gram positive is ranging from 8-13 mm, while it is 4-9 mm for Gram negative bacteria and it depends on the concentration of the extract.

5. CONCLUSION

Based on the findings of this experimental work, it can be concluded that S. securidaca seeds extract is a potent source of antioxidant and antimicrobial agents against Gram positive and...
Gram negative bacterial strains. So that, it could be used as natural antibacterial and antioxidant agent.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2020 Al-Mazaideh and Al-Quran; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/58374