Degradation of Phytochemical and Antioxidant Capacity of Noni (Morinda Citrifolia L.) Pulp Tea during Drying and Roasting Treatment

Minh Phuoc Nguyen

Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JPRI/2020/v32i20020

Received 20 December 2019
Accepted 28 February 2020
Published 07 March 2020

ABSTRACT

Noni (Morinda citrifolia L.) fruit is highly evaluated as an important herb with a good source of natural antioxidant against various ailments as well as maintain overall good health. It’s normally disposed due to unpleasant aroma from the ripened fruit. There is limited literature mentioned to the decomposition of this valuable fruit during thermal processing. Hence this research aimed to evaluate the possible degradation of total phenolic (mg GAE/100 g), total flavonoid (mg QE/100 g), DPPH radical-scavenging ability (mM TE/100 g), FRAP ferric reducing antioxidant power assay (mM TE/100 g) in raw, dried and roasted noni pulp tea. The highest contents of functional constituents and antioxidant capacity were noticed in the raw sample; meanwhile decreased dramatically in the roasted one. However, degradation of noni flavonol glycosides during roasting could produce aglycone metabolites, which in turn, may lead to increased bioavailability. Owing to degradation of phytochemical and antioxidant ability by harsh thermal treatment, it’s necessary to be careful in drying and roasting to limit detrimental effect in herbal noni tea production.

Keywords: Noni; pulp; degradation; phytochemical; antioxidant; phenolic; tea.

1. INTRODUCTION

Noni (Morinda citrifolia L.) is a popular plant in Southeast Asia. Its fruit has a yellowish-white ovoid lumpy body. The unripe fruit has dark green color and the ripe fruit releases a strong butyric acid as decayed smell [1]. The unpleasant odor of noni extract was accounted

*Corresponding author: E-mail: minh.np@ou.edu.vn;
2.1 Materials

Raw noni fruits were naturally collected from Can Tho city, Vietnam. After harvesting, they must be conveyed to the laboratory as soon as possible for experiments. All standards and reagents such as Folin-Ciocalteu reagent, Na$_2$CO$_3$, gallic acid, Al(NO$_3$)$_3$, potassium acetate, DPPH, methanol, ethanol, acetate buffer, 2,4,6-tripyridyl-s-triazine, HCl, FeCl$_3$$\cdot$6H$_2$O were analytical grade and purchased from Sigma-Aldrich. Lab utensils and equipments included weight balance, hot air dryer, roasting oven, spectrophotometer.

2.2 Research Methods

Noni pulp was chopped into small pieces, dried at 45°C for 8 hours to 8.5% moisture content, roasted at 170°C for 20 minutes. The raw, dried, roasted samples were all analyzed the total phenolic (mg GAE/100 g), total flavonoid (mg QE/100 g), DPPH radical-scavenging ability (mM TE/100 g), FRAP ferric reducing antioxidant power assay (mM TE/100 g) to demonstrate the reduction of phytochemical and antioxidant capacity through thermal treatment. Total phenolic content (mg GAE/g) was evaluated using Folin–Ciocalteu assay [16]. Total flavonoid content (mg QE/g) was evaluated by the aluminium calorimetric method [17]. DPPH (mM TE/g) assay and FRAP (mM TE/g) were performed according to Ivanov et al. [18]. All analyses were performed in triplicates. Data were statistically summarized by Statgraphics Centurion XVI.

3. RESULTS AND DISCUSSION

Phenolic constituents which are related to the flavor, color, shelflife of herbal products, strongly correlated with the antioxidant capacity [19]. Nascimento et al. [20] evaluated the chemical composition, nutritional properties and antioxidant capacity of noni’s pulp and seeds. The total phenolic, DPPH, FRAP were 79.57 mg GAE/100 g, 348.47 µM TE/g, 38.07 µM TE/g respectively. Palioto et al. [21] found higher total phenolic, ranging from 820.8 to 1143.5 mg GAE/100 for noni’s pulp. In our research, noni pulp was chopped into small pieces, dried at 45°C for 8 hours to 8.5% moisture content, roasted at 170°C for 20 minutes. Results were clearly presented in Table 1. The decrease of the total phenolic, flavonoid components and the antioxidant activity was observed after drying and roasting. It could be explained as a result of thermal effect which was detrimental of sensitive constituents. Krishnaiah et al. [22] proved that dehydrated noni’s pulp had total phenolic 431.8 mg GAE/100 g. Roasting process for the noni leaf tea could induce the degradation of flavonol glycosides. It may lead to increased bioavailability [15]. Ana et al. [14] demonstrated that convective drying caused a degradation of total phenolic (20-28%), the antioxidant capacity (82-93% DPPH inhibition) of dried noni.
Table 1. Total polyphenolic, flavonoid and antioxidant activities of raw, dried and roasted noni tea

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total phenolic (mg GAE/100 g)</th>
<th>Total flavonoid (mg QE/100 g)</th>
<th>DPPH (mM TE/100 g)</th>
<th>FRAP (mM TE/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>639.83±0.02<sup>a</sup></td>
<td>111.72±0.00<sup>a</sup></td>
<td>24.63±0.02<sup>a</sup></td>
<td>57.34±0.01<sup>a</sup></td>
</tr>
<tr>
<td>Dried</td>
<td>324.36±0.03<sup>b</sup></td>
<td>80.88±0.01<sup>ab</sup></td>
<td>16.35±0.03<sup>b</sup></td>
<td>36.89±0.02<sup>b</sup></td>
</tr>
<tr>
<td>Roasted</td>
<td>115.97±0.01<sup>c</sup></td>
<td>58.45±0.03<sup>b</sup></td>
<td>10.84±0.00<sup>c</sup></td>
<td>19.53±0.01<sup>c</sup></td>
</tr>
</tbody>
</table>

Note: The values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%)

4. CONCLUSION

Thermal treatment is one of the most important processing and preserving technologies in the food industry. It helps decreasing the chemical, enzymatic and microbiological reactions to extend product shelf-life. *Morinda citrifolia* (Noni) has pharmacologically active antioxidant activities and healthy benefits. Noni tea prepared from its pulp via drying and roasting process has attract much more consumer’s attention owing to its potential health benefits in daily consumption. Degradation of metabolites during thermal treatment is crucial to evaluate its therapeutic attributes. We have demonstrated drying and roasting had significant effect to the degradation of phytochemical and antioxidant capacity of dry-roasted noni tea.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

10. Robledo-Pe, Karla Buenano Sc, Jimena Maurtua Mo, Stefania Ramos-Escudero, Fernando. Behavior of polyphenol...

12. Larrosa APQ, Cadaval TRS Jr., Pinto LAA. Influence of drying methods on the characteristics of a vegetable paste formulated by linear programming maximized antioxidant activity. LWT Food Science and Technology. 2015;60:178-185.

© 2020 Nguyen; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/55214