Assessment the Photo-neutron Contamination of IMRT and 3D-Conformal Techniques Using Thermoluminescent Dosimeter (TLD)

Ebtesam M. Mohamedy, Hassan Fathy, Wafaa M. Khalil, Nadia L. Helal and Ehab M. Attalla

1Egyptian Nuclear and Radiological Regulatory Authority, Egypt.
2Department of Physics, Faculty of Science, Cairo University, Egypt.
3Department of Biophysics, Faculty of Science Cairo University, Egypt.
Departement of Radiation Safety, Egyptian Nuclear and Radiological Regulatory Authority, Egypt.
National Cancer Institute, University Cairo, Egypt.

Authors’ contributions

This work was carried out in collaboration between all authors. Author EMM designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors WMK and NLH managed the analyses of the study. Authors EMA and HF managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2018/v25i430107

Editor(s):
(1) Dr. Wenbin Zeng, Professor, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.

Reviewer(s):
(1) Mohammed Sidi, Bayero University Kano, Nigeria.
(2) Dr. Abdul Haneefa Kummali, Royal Marsden Hospita, UK.
Complete Peer review History: http://www.sdiarticle3.com/review-history/47266

Received 27 October 2018
Accepted 12 February 2019
Published 06 March 2019

Original Research Article

ABSTRACT

The aim of the study is to evaluate the dependence of photo-neutron production on field size, depth in phantom and distance from isocenter and also to calculate the equivalent neutron doses for PTV and OARs of IMRT and 3D-CRT techniques using TLD (600/700). The Linac Siemens Oncor installed at Nasser Institute, Cairo, Egypt. TLDs, Neutron Monitor, Ionization chamber were provided by NIS, the duration of the study was from November 2017 to July 2018. 5 prostate
cancer cases were selected treated with high energy beam (15MV) Linear accelerator using 3DCRT and IMRT treatment plans. The OARs were bladder, rectum and femur. Once the plans were completed, there were copied from the planning system onto the RW3 slab phantom in which pairs of TLD chips (600/700) were placed at the exact site of PTV and OARs. The results showed that: The measured photo-neutron decreases from 0.2 mSv/Gy to 0.09 mSv/Gy as increases field sizes from 2x2 cm² to 20x20 cm². The measured photo-neutron was maximum at dmax =0.15 mSv/Gy and decreases gradually as increases the depth in phantom reaches to 0.07 mSv/Gy at 10cm depth in phantom. The measured photo-neutron decreases from 1.5 mSv/Gy to 0.02 mSv/Gy when measured at isocenter and at 100cm along the patient couch. Using 3DCRT for PTV and OARs were ranging from 0.027 to 0.39 mSv per photon Gy and for IMRT were 0.135 to 2.34 mSv per photon Gy. In conclusion the photo-neutron production is decreases as increases field size and distance from isocenter along patient couch while increases with depth in phantom up to dmax and decreases gradually as increases depth in phantom. IMRT requires longer beam-on time than 3DCRT leading to worse OARs sparing and increase the production of photo-neutrons than 3DCRT.

Keywords: Photo-neutrons; 3DCRT; IMRT; TLD.

1. INTRODUCTION

Radiotherapy means to convey a radiation dose (therapeutic dose) to kill all tumor cells which may cause harm to other sensitive organs, these organs called in the radiotherapy the organ at risk (OAR).

Modern radiotherapy techniques using high-energy linear accelerators aim to achieve better tumor control for deep-seated tumors. However, they also impose certain risks that must be assessed and weighed against their benefits. In particular, the risk of radiation-induced second primary cancers after external-beam radiotherapy is a debated topic among scientific and medical groups [1].

According to the International Commission on Radiological Protection (ICRP), it is necessary to estimate all the sources of doses inside and outside the Planning target volume (PTV) to justify radiation doses to patients treated with radiotherapy (RT). The primary concern with out-of-field radiation is that even relatively low doses outside the target have the potential to induce second cancers (stochastic effects) [2]. Medical linear accelerator (Linac) with high-energy photon beams (>10 MV) provide more deep penetration for greater depth dose, decreasing skin and peripheral doses due to less scatter than lower-energy beams. However these high-energy photons can also produce unwanted neutrons. The production of photoneutrons mostly generated by the giant dipole resonance reactions (γ, n) with high-Z material inside the head of the accelerators as the target, the flattening filter, collimator and multi-leaf collimator [3]. A non-negligible production of photoneutrons can be generated in low-Z materials like C, N and O, in particular in the patient body and materials in the treatment hall when linear accelerators operate in the photon mode (i.e. via bremsstrahlung process) above 10 MV [4]. The dose from neutrons that produced during the therapy with high energy photon beams is un-accounted dose which may induce secondary cancer, the knowledge of the extra dose from neutrons in the vicinity of patient position is an important goal from the radiation protection point of view [5]. Three-dimensional conformal radiotherapy (3DCRT) is one of the radiotherapy treatment techniques that are based on 3D anatomic information and utilize dose distributions that acclimate as nearly as possible to the planning target volume (PTV) regarding adequate dose to the tumor and minimum dose as possible to the surrounding normal tissue. Intensity-modulated radiation therapy (IMRT) is another treatment technique of radiotherapy which provide non-uniform adequate dose to the patient from many different angles of the treatment beam to optimize the composite dose distribution [6]. A thermo-luminescent dosimeter (TLD) used to determine the equivalent dose of the neutron. Neutrons cannot produce direct ionization in a detector but they produce charged particles such as protons and alpha particles that thus cause ionization [7-8]. Other passive detectors adequate for those installations can be consulted in the literature [9,10,11].

Neutron dose produced from high-energy photon beams (>10 MV) Linac that contaminate the therapeutic beams is not detailed in routine
treatment planning though this information is potentially important for better estimates of health risks including secondary cancers. This work aims to assess the photo-neutron contamination for 15MV photon mode linac with different variables and also assess the photo-neutron contamination using 3DCRT and IMRT treatment techniques that used in our hospitals in Egypt.

2. MATERIALS AND METHODS

2.1 Thermoluminescence Dosimeters (TLD Chips)

In the present study, the TLDs used were 6LiF: Mg, Ti (TLD600) which is sensitive to neutrons and 7LiF: Mg, Ti (TLD700) more sensitive to photons. These TLDs (TLD600 with 95.6% 6LiF and TLD700 with 99.9% 7LiF) are in the form of chips with dimension of 3.2 x 3.2 x 0.9 mm manufactured by Harshaw chemical company. The purpose of measuring the Element Correction Coefficient (ECC) for each chip to ensures that the entire population of TLDs were respond almost the same, all the chips irradiated with a single known dose 200 cGy using Siemens Linac 6 MV, the irradiations were performed with a field size of 10x10 cm² and Source to Surface Distance (SSD) of 100cm. The ECC is performed using the following equation: Examples of some equations are given below:

\[\text{ECC}_n = \frac{\langle \text{TLR} \rangle}{\text{TLR}_n} \]

(2.1)

Where the TLR is the average read-out of the TLD chips and TLRn is the read-out of the TLD number n [12]. This step has been repeated three times during this work.

Since TLD response is energy dependent, it is better to calibrate the TLD chips by the energy which is used in experiment [12]. Therefore, gamma calibration was performed by 15 MV photon beams.

2.1.1 Gamma and neutron calibration

The gamma calibration was done by two methods; Using 15MV Linac to irradiate all TLD chips, the chips were divided into 6 groups exposed to definite doses of (100, 130, 160, 190, 220, 250) cGy. The irradiations were performed in a RW3lab phantom 30x30x30cm³ with a field size of 10x10cm² and max depth in phantom (dmax =3) at zero angle. The other method of calibration presented in table 1. The TLDs were read out using PCL3 readout system (automatic reader) has been used for TLD measurements. After each use all the chips were annealed in a dedicated oven at 400°C for one hour followed by 100°C for two hours. Fig.1 shows the gamma calibration curve. Using 15MV Linac to irradiate all TLD chips as previous but using tungsten plates in front of the point of measurement serve as a moderator and to thermalize the fast neutron.

The neutron calibration was performed by A 5 Ci Am-241-Be source. All chips were placed at 1m distance from the source using 6 cm polyethylene as moderator in front of the chips. Data of calibration represented in Table 2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Manufacture</th>
<th>Cal. on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal. Source UNIDOS meter</td>
<td>137Cs</td>
<td>PTW, Freiburg</td>
<td>May/2017</td>
</tr>
<tr>
<td>(BIPM) Ion chamber 30 cc</td>
<td>App. Nr.10001-10522</td>
<td>NE2530 (#424)</td>
<td>NE 2530</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May/2017(BIPM)</td>
</tr>
</tbody>
</table>

Table 2. Standard/ reference/ major used data of neutron calibration

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Cal. on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal. Source Neutron Monitor</td>
<td>Am-Be</td>
<td>NE., LTD.</td>
<td>Mar.2016 (PTB)</td>
</tr>
<tr>
<td>Results</td>
<td>St. Dev.0.565</td>
<td>Correction factor 0.066</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Assess the Neutron Contamination for 15MV Photon Mode with Different Variables

In this step all the TLD chips (600 and 700) exposed to a single dose 200cGy with different variables as seen in the following figs (4, 5, 6, and 7). The equivalent dose HT for neutron was calculated by the equation 2.

\[HT = W_r \times DT \] \hspace{1cm} (2.2) \hspace{1cm} \text{(ref ICRP 60)}

Where: \(HT = \) Equivalent dose (Sv), \(DT = \) Absorbed Dose (Gy), \(W_r = \) Radiation weighting factor was calculated using ICRP-60 recommended formula (ICRP, 1991) [13-14].
2.3 Treatment Planning System

5 prostate cancer cases were selected in this study for patients completed their courses of radical radiotherapy to the prostate with high energy beam (15MV) Linear accelerator Siemens Oncor impression, Germany, installed at Nasser Institute- Oncology Center. The OARs were bladder, rectum and femur. Using both 3DCRT and IMRT treatment plans. Once the plans were completed, there were copied from a patient onto the RW3 slab phantom. The phantom images then transferred to XIO TPS (planning system) via the network. On the TPS, all fields of both treatment plans are transferred to the phantom, the total prescribed dose for each plan was 2.2Gy per 30 sessions to deliver total prescribed dose of 70Gy. A 5-field conventional 3D conformal plan has been used. The gantry angles for the 5-field conventional 3D conformal were 0°, 45°, 90°, 270°, and 315°. A standard 5-field treatment was calculated for the slab phantom, as shown in (fig.2). The total numbers of Monitor Units (MU) for each angle were 77, 54, 70, 77, and 44 respectively irradiated per fraction resulting in a total dose to the PTV of 70 Gy. 7 radiation fields used in IMRT plan with angles 0, 51, 102, 153, 204, 255, and 302 (fig.3). The total numbers of MUs for each angle were 52, 63, 87, 96, 53, 128, and 73 respectively. The plans were optimized to reduce the dose to the OARs to a minimum, while the dose to the PTV was maintained in accordance with the ICRU 83 Report [15].

3. RESULTS AND DISCUSSION

In the step of assessing photo-neutron production at different variables, the equivalent neutron doses in mSv per photon Gy is expressed with (mSv/Gy).

From fig.4 noticed that the equivalent neutron dose decreased with increase field sizes from 0.2 to 0.09 mSv/Gy with field size changed from 2x2 cm² to 20x20 cm², this result has agreement with the previous published work [16] in which the equivalent neutron dose decreased with increase field sizes from 1 to 0.6 mSv/Gy using 18 MV Linac.

The measured data in fig.5 showed that the largest equivalent neutron dose was at isocenter 0.15 mSv/Gy reached to 0.02 mSv/Gy at 100cm. this data correlated with the previous published works [17,18,19]. In reference [17] the equivalent neutron dose is greater at the isocenter 1.35...
mSv/Gy and decreases gradually with the distance away from the isocenter 0.0469 mSv/Gy at 75 cm, and decreased from 1.288 mSv/Gy at the isocenter to 0.062 mSv/Gy at 100 cm as found in reference [19].

The variation of equivalent neutron dose with depth in phantom showed in fig. 6. The equivalent neutron dose increased reach to maximum at \(d_{\text{max}} = 0.15 \) mSv/Gy and decreased gradually as increased the depth in phantom reached to 0.07 mSv/Gy at 10 cm depth in phantom. This result showed good agreement with the previous published work [20] in which the highest equivalent neutron dose was at \(d_{\text{max}} = 0.67 \) and decreased to 0.4 mSv/Gy at phantom's depth= 10 cm.

Table 3. Represent the summary of findings from previous studies which correlated to the present one

<table>
<thead>
<tr>
<th>Medical Accelerator Energy (MV)</th>
<th>Reference</th>
<th>Field size (cm²)</th>
<th>Distance (cm)</th>
<th>Depth in Phantom (cm)</th>
<th>The measured Equivalent neutron dose (mSv/Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elekta (18MV)</td>
<td>[16]</td>
<td>Changed from 5x5 to 30x40</td>
<td></td>
<td></td>
<td>Decreased from 1 to 0.6</td>
</tr>
<tr>
<td>Varian (15MV)</td>
<td>[17]</td>
<td>Changed from isocenter to 75</td>
<td></td>
<td>isocenter = 1.35</td>
<td>75 cm= 0.0469</td>
</tr>
<tr>
<td>Elekta (15MV)</td>
<td>[19]</td>
<td>Changed from isocenter to 100</td>
<td></td>
<td>isocenter = 1.28</td>
<td>100 cm= 0.062</td>
</tr>
<tr>
<td>Varian (18MV)</td>
<td>[20]</td>
<td>Changed from surface to 10 depth in phantom</td>
<td></td>
<td>(d_{\text{max}} = 0.67)</td>
<td>decreased to 0.4 at 10 cm depth</td>
</tr>
</tbody>
</table>

Fig. 4. Equivalent neutron doses at the isocenter with SSD = 100 cm and zero angle using different field sizes (2x2, 5x5, 10x10, 20x20) cm²
Fig. 5. Equivalent neutron doses at four selected positions (Isocenter = 0 cm, 20 cm, 50 cm and 100 cm) along the patient couch with FS (10x10) cm², SSD = 100 cm at zero angle using TLD chips.

Fig. 6. Equivalent neutron doses for different depths (Surface= 0, 3, 6 and 10) cm in phantom with FS (10x10) cm², zero angle at isocenter.

Table 4. Equivalent neutron doses for PTV and OAR using IMRT and 3D-CRT techniques

<table>
<thead>
<tr>
<th>Organ</th>
<th>3DCRT (mSv/Gy)</th>
<th>IMRT (mSv/Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate (PTV)</td>
<td>0.39±0.007</td>
<td>2.34±0.001</td>
</tr>
<tr>
<td>Bladder (OAR)</td>
<td>0.3±0.005</td>
<td>0.28±0.003</td>
</tr>
<tr>
<td>Rectum (OAR)</td>
<td>0.19±0.04</td>
<td>1.1±0.058</td>
</tr>
<tr>
<td>Rt. Femur (OAR)</td>
<td>0.027±0.01</td>
<td>0.135±0.02</td>
</tr>
</tbody>
</table>
The measured equivalent neutron doses using 3DCRT for PTV and OAR were ranging from 0.027 to 0.39 mSv per photon Gy with average value 0.20 mSv per photon Gy (i.e. for 70 Gy treatment dose, the equivalent neutron dose was 1.89 to 27.3 mSv). For IMRT the measured equivalent neutron doses for PTV and OAR were ranging from 0.135 to 2.34 mSv per photon Gy with average value 1.23 mSv per photon Gy (i.e. for 70 Gy treatment dose, the equivalent neutron dose was 9.45 to 163.8 mSv) as described in Table 4 and Fig.7. These finding correlated with the published data [21], the neutron equivalent doses ranged between 0.5 and 3.6 mSv per photon Gy (i.e. for a 74 Gy treatment, the neutron equivalent dose range was from 37 to 263 mSv).

In 3DCRT the dose to bladder was nearly equal to the dose to the prostate that's because the location of the bladder is close to the prostate, while rectum received dose nearly equal to 40% from PTV dose. Rt. femur the dose was equal to 6% from PTV dose. In IMRT the doses at OARs were larger than doses with 3DCRT except for bladder the dose is larger than dose with IMRT that's due to the bladder in 3DCRT was located within the radiation field while in IMRT it was located partially in the field. These findings correlated with the published data [22].

4. CONCLUSIONS

In conclusion: the photo-neutron production is varying with field size, gantry angle, depth in phantom and distance from isocenter along patient couch. The contamination of therapeutic dose from neutron delivered to the patient during the therapy is not negligible dose which reach to 2% with 3D-CRT and 39% with IMRT. IMRT has more complex design with more scattering elements than 3DCRT so increases radiation risk induces secondary cancer. Treatment Planning System doesn't designed for measure dose from neutron then more research using Monte Carlo Simulation (MC) is required to measure the contamination of the therapeutic radiation dose with neutron when using high energy linac.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGMENTS

Another study using GEANT-4 MC is under preparation. MC simulations can be used for evaluation of dose from a variety of particles produced in photo-nuclear reactions inside patient body. This dose has not generally been calculated before for radiation therapy treatments.

The Linac Siemens Oncor impression, Germany installed at Nasser Institute- Oncology Center, Cairo, Egypt. TLDs, Neutron Monitor, Ionization...
chamber were provided by National Institute of Standards (NIS).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2018 Mohamedy et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/47266